Suppr超能文献

生物材料靶向精准纳米颗粒递送至损伤的脊髓。

Biomaterial-targeted precision nanoparticle delivery to the injured spinal cord.

机构信息

Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, FL 33146, United States; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, 1951 NW 7th Avenue, Miami, Florida 33136, United States.

Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, 1951 NW 7th Avenue, Miami, Florida 33136, United States; Department of Biochemistry & Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United States.

出版信息

Acta Biomater. 2022 Oct 15;152:532-545. doi: 10.1016/j.actbio.2022.08.077. Epub 2022 Sep 8.

Abstract

Drug delivery requires precision in timing, location, and dosage to achieve therapeutic benefits. Challenges in addressing all three of these critical criteria result in poor temporal dexterity, widespread accumulation and off-target effects, and high doses with the potential for toxicity. To address these challenges, we have developed the BiomatErial Accumulating Carriers for On-demand Nanotherapy (BEACON) platform that utilizes an implantable biomaterial to serve as a target for systemically delivered nanoparticles (NPs). With the BEACON system, administered NPs are conjugated with a ligand that has high affinity for a receptor in the implanted biomaterial. To test BEACON, an in vivo spinal cord injury (SCI) model was used as it provides an injury model where the three identified criteria can be tested as it is a dynamic and complicated injury model with no currently approved therapies. Through our work, we have demonstrated temporal dexterity in NP administration by injecting 6 days post-SCI, decreased off-target accumulation with a significant drop in liver accumulation, and retention of our NPs in the target biomaterial. The BEACON system can be applied broadly, beyond the nervous system, to improve systemically delivered NP accumulation at an implanted biomaterial target. STATEMENT OF SIGNIFICANCE: Targeted drug delivery approaches have the potential to improve therapeutic regimens for patients on a case-by-case basis. Improved localization of a therapeutic to site of interest can result in increased efficacy and limit the need for repeat dosing. Unfortunately, targeted strategies can fall short when receptors on cells or tissues are too widespread or change over the course of disease or injury progression. The BEACON system developed herein eliminates the need to target a cell or tissue receptor by targeting an implantable biomaterial with location-controllable accumulation and sustained presentation over time. The targeting paradigm presented by BEACON is widely applicable throughout tissue engineering and regenerative medicine without the need to retool for each new application.

摘要

药物输送需要在时间、位置和剂量上精确控制,以实现治疗效果。在解决这三个关键标准时,所面临的挑战导致了时间灵活性差、广泛积累和非靶向效应、以及高剂量和潜在毒性。为了解决这些挑战,我们开发了生物材料积累载体按需纳米治疗(BEACON)平台,该平台利用可植入生物材料作为系统递送纳米颗粒(NPs)的靶标。在 BEACON 系统中,给予的 NPs 与配体缀合,该配体对植入生物材料中的受体具有高亲和力。为了测试 BEACON,我们使用体内脊髓损伤(SCI)模型进行了测试,因为它提供了一个损伤模型,可以在该模型中测试这三个已确定的标准,因为它是一个动态和复杂的损伤模型,目前尚无批准的治疗方法。通过我们的工作,我们已经证明了在 SCI 后 6 天进行 NP 给药时具有时间灵活性,减少了非靶向积累,肝积累显著下降,并且我们的 NPs 保留在目标生物材料中。BEACON 系统可以广泛应用于神经系统以外的领域,以改善系统递送 NP 在植入生物材料靶标中的积累。

意义声明

靶向药物输送方法有可能根据患者的具体情况改善治疗方案。将治疗药物定位到感兴趣的部位可以提高疗效,并减少重复给药的需求。不幸的是,当细胞或组织上的受体过于广泛或在疾病或损伤进展过程中发生变化时,靶向策略可能会失败。本文开发的 BEACON 系统通过靶向具有位置可控积累和随时间持续呈现的可植入生物材料,消除了对细胞或组织受体进行靶向的需要。BEACON 提出的靶向范例在整个组织工程和再生医学中具有广泛的适用性,而无需为每个新应用重新调整工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c047/10551882/535c2e9ba270/nihms-1926375-f0001.jpg

相似文献

5
7
Biomaterial scaffolds used for the regeneration of spinal cord injury (SCI).用于脊髓损伤(SCI)再生的生物材料支架。
Histol Histopathol. 2014 Nov;29(11):1395-408. doi: 10.14670/HH-29.1395. Epub 2014 May 16.
8

引用本文的文献

2
Biomaterial-based strategies: a new era in spinal cord injury treatment.基于生物材料的策略:脊髓损伤治疗的新时代。
Neural Regen Res. 2025 Dec 1;20(12):3476-3500. doi: 10.4103/NRR.NRR-D-24-00844. Epub 2025 Jan 13.
3
Editorial: Glial cells in homeostasis, neurodevelopment, and repair.社论:稳态、神经发育和修复中的神经胶质细胞
Front Cell Neurosci. 2025 Feb 27;19:1575105. doi: 10.3389/fncel.2025.1575105. eCollection 2025.

本文引用的文献

5
On-Demand Drug Release from Click-Refillable Drug Depots.基于点击式可再填充药物储库的按需药物释放
Mol Pharm. 2021 Oct 4;18(10):3920-3925. doi: 10.1021/acs.molpharmaceut.1c00535. Epub 2021 Sep 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验