Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Structure. 2021 Aug 5;29(8):922-933.e3. doi: 10.1016/j.str.2021.03.014. Epub 2021 Apr 8.
Major facilitator superfamily (MFS) proteins operate via three different mechanisms: uniport, symport, and antiport. Despite extensive investigations, the molecular understanding of antiporters is less advanced than that of other transporters due to the complex coupling between two substrates and the lack of distinct structures. We employ extensive all-atom molecular dynamics simulations to dissect the complete substrate exchange cycle of the bacterial NO/NO antiporter, NarK. We show that paired basic residues in the binding site prevent the closure of unbound protein and ensure the exchange of two substrates. Conformational transition occurs only in the presence of substrate, which weakens the electrostatic repulsion and stabilizes the transporter. Furthermore, we propose a state-dependent substrate exchange model, in which the relative spacing between the paired basic residues determines whether NO and NO bind simultaneously or sequentially. Overall, this work presents a general working model for the antiport mechanism within the MFS.
主要易化超家族(MFS)蛋白通过三种不同的机制起作用:单运输、协同运输和反向运输。尽管进行了广泛的研究,但由于两个底物之间复杂的耦合以及缺乏独特的结构,反向转运蛋白的分子理解还不如其他转运蛋白先进。我们采用广泛的全原子分子动力学模拟来剖析细菌 NO/NO 反向转运蛋白 NarK 的完整底物交换循环。我们表明,结合位点中的成对碱性残基可防止未结合的蛋白质关闭,并确保两种底物的交换。构象转变仅在存在底物的情况下发生,这会削弱静电排斥并稳定转运体。此外,我们提出了一种基于状态的底物交换模型,其中成对碱性残基之间的相对间距决定了 NO 和 NO 是否同时或顺序结合。总的来说,这项工作为 MFS 中的反向转运机制提供了一个通用的工作模型。