Keshavarz Bavand, Rodrigues Donatien Gomes, Champenois Jean-Baptiste, Frith Matthew G, Ilavsky Jan, Geri Michela, Divoux Thibaut, McKinley Gareth H, Poulesquen Arnaud
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction des Énergies, Institut des Sciences et Technologies pour une Economie Circulaire des Énergies bas Carbone, Département de Recherche sur les Technologies pour l'Enrichissement, le Démantèlement et les Déchets, Service d'Études des Technologies pour l'Assainissement-Démantèlement et l'Étanchéité, Laboratoire d'Études des Ciments et Bitumes pour le Conditionnement, Université Montpellier, 30207 Bagnols-sur-Cèze, France.
Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). doi: 10.1073/pnas.2022339118.
Colloidal gels result from the aggregation of Brownian particles suspended in a solvent. Gelation is induced by attractive interactions between individual particles that drive the formation of clusters, which in turn aggregate to form a space-spanning structure. We study this process in aluminosilicate colloidal gels through time-resolved structural and mechanical spectroscopy. Using the time-connectivity superposition principle a series of rapidly acquired linear viscoelastic spectra, measured throughout the gelation process by applying an exponential chirp protocol, are rescaled onto a universal master curve that spans over eight orders of magnitude in reduced frequency. This analysis reveals that the underlying relaxation time spectrum of the colloidal gel is symmetric in time with power-law tails characterized by a single exponent that is set at the gel point. The microstructural mechanical network has a dual character; at short length scales and fast times it appears glassy, whereas at longer times and larger scales it is gel-like. These results can be captured by a simple three-parameter constitutive model and demonstrate that the microstructure of a mature colloidal gel bears the residual skeleton of the original sample-spanning network that is created at the gel point. Our conclusions are confirmed by applying the same technique to another well-known colloidal gel system composed of attractive silica nanoparticles. The results illustrate the power of the time-connectivity superposition principle for this class of soft glassy materials and provide a compact description for the dichotomous viscoelastic nature of weak colloidal gels.
胶体凝胶是由悬浮在溶剂中的布朗粒子聚集而成的。凝胶化是由单个粒子之间的吸引相互作用诱导产生的,这种相互作用促使簇的形成,而簇又聚集形成一个跨越空间的结构。我们通过时间分辨结构和力学光谱研究了铝硅酸盐胶体凝胶中的这一过程。利用时间连通性叠加原理,通过应用指数啁啾协议在整个凝胶化过程中测量得到的一系列快速获取的线性粘弹性光谱,被重新标度到一条跨越约八个数量级的约化频率的通用主曲线上。该分析表明,胶体凝胶的潜在弛豫时间谱在时间上是对称的,具有幂律尾部,其特征由在凝胶点设定的单个指数决定。微观结构力学网络具有双重性质;在短长度尺度和快速时间下,它表现出玻璃态,而在较长时间和较大尺度下,它呈凝胶状。这些结果可以用一个简单的三参数本构模型来描述,并表明成熟胶体凝胶的微观结构承载着在凝胶点形成的原始跨样品网络的残余骨架。通过将相同技术应用于另一个由有吸引力的二氧化硅纳米颗粒组成的著名胶体凝胶系统,我们的结论得到了证实。结果说明了时间连通性叠加原理对这类软玻璃态材料的作用,并为弱胶体凝胶的二分粘弹性性质提供了一个简洁的描述。