Institute of Physics, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands.
Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK.
Nat Commun. 2020 Jul 16;11(1):3558. doi: 10.1038/s41467-020-17353-8.
The dynamical arrest of attractive colloidal particles into out-of-equilibrium structures, known as gelation, is central to biophysics, materials science, nanotechnology, and food and cosmetic applications, but a complete understanding is lacking. In particular, for intermediate particle density and attraction, the structure formation process remains unclear. Here, we show that the gelation of short-range attractive particles is governed by a nonequilibrium percolation process. We combine experiments on critical Casimir colloidal suspensions, numerical simulations, and analytical modeling with a master kinetic equation to show that cluster sizes and correlation lengths diverge with exponents ~1.6 and 0.8, respectively, consistent with percolation theory, while detailed balance in the particle attachment and detachment processes is broken. Cluster masses exhibit power-law distributions with exponents -3/2 and -5/2 before and after percolation, as predicted by solutions to the master kinetic equation. These results revealing a nonequilibrium continuous phase transition unify the structural arrest and yielding into related frameworks.
具有吸引力的胶体颗粒进入非平衡结构的动力学停止,即胶凝,是生物物理学、材料科学、纳米技术以及食品和化妆品应用的核心,但目前对此缺乏全面的理解。特别是,对于中等颗粒密度和吸引力,结构形成过程仍不清楚。在这里,我们表明,短程吸引力颗粒的胶凝受非平衡渗流过程的控制。我们将临界 Casimir 胶体悬浮液的实验、数值模拟和分析模型与主动力学方程相结合,表明簇大小和相关长度的发散指数分别约为 1.6 和 0.8,与渗流理论一致,而颗粒附着和脱离过程中的详细平衡被打破。在渗流前后,簇质量表现出幂律分布,指数分别为-3/2 和-5/2,这与主动力学方程的解一致。这些揭示非平衡连续相变的结果将结构捕获和屈服统一到相关框架中。