Suppr超能文献

实时基于LED的光声成像中提高信噪比:基于卷积神经网络的深度学习架构的比较研究

Enhancing signal-to-noise ratio in real-time LED-based photoacoustic imaging: A comparative study of CNN-based deep learning architectures.

作者信息

Paul Avijit, Mallidi Srivalleesha

机构信息

Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.

出版信息

Photoacoustics. 2024 Nov 30;41:100674. doi: 10.1016/j.pacs.2024.100674. eCollection 2025 Feb.

Abstract

Recent advances in Light Emitting Diode (LED) technology have enabled a more affordable high frame rate photoacoustic imaging (PA) alternative to traditional laser-based PA systems that are costly and have slow pulse repetition rate. However, a major disadvantage with LEDs is the low energy outputs that do not produce high signal-to-noise ratio (SNR) PA images. There have been recent advancements in integrating deep learning methodologies aimed to address the challenge of improving SNR in LED-PA images, yet comprehensive evaluations across varied datasets and architectures are lacking. In this study, we systematically assess the efficacy of various Encoder-Decoder-based CNN architectures for enhancing SNR in real-time LED-based PA imaging. Through experimentation with phantoms, mouse organs, and tumors, we compare basic convolutional autoencoder and U-Net architectures, explore hierarchical depth variations within U-Net, and evaluate advanced variants of U-Net. Our findings reveal that while U-Net architectures generally exhibit comparable performance, the Dense U-Net model shows promise in denoising different noise distributions in the PA image. Notably, hierarchical depth variations did not significantly impact performance, emphasizing the efficacy of the standard U-Net architecture for practical applications. Moreover, the study underscores the importance of evaluating robustness to diverse noise distributions, with Dense U-Net and R2 U-Net demonstrating resilience to Gaussian, salt and pepper, Poisson, and Speckle noise types. These insights inform the selection of appropriate deep learning architectures based on application requirements and resource constraints, contributing to advancements in PA imaging technology.

摘要

发光二极管(LED)技术的最新进展使得一种比传统基于激光的光声成像(PA)系统更经济实惠的高帧率光声成像成为可能,传统系统成本高昂且脉冲重复率低。然而,LED的一个主要缺点是能量输出低,无法产生高信噪比(SNR)的光声图像。最近在集成深度学习方法方面取得了进展,旨在应对提高LED光声图像信噪比的挑战,但缺乏对不同数据集和架构的全面评估。在本研究中,我们系统地评估了各种基于编码器-解码器的卷积神经网络(CNN)架构在实时基于LED的光声成像中提高信噪比的功效。通过对体模、小鼠器官和肿瘤进行实验,我们比较了基本卷积自动编码器和U-Net架构,探索了U-Net内的层次深度变化,并评估了U-Net的先进变体。我们的研究结果表明,虽然U-Net架构通常表现出可比的性能,但密集U-Net模型在去除光声图像中不同噪声分布方面显示出前景。值得注意的是,层次深度变化对性能没有显著影响,强调了标准U-Net架构在实际应用中的有效性。此外,该研究强调了评估对不同噪声分布的鲁棒性的重要性,密集U-Net和R2 U-Net对高斯、椒盐、泊松和斑点噪声类型表现出了抗性。这些见解为根据应用需求和资源限制选择合适的深度学习架构提供了参考,有助于光声成像技术的进步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/060a/11699471/0c7035e0dba6/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验