Leeds Institute of Health Sciences, University of Leeds, Leeds, England, UK; Choice Modelling Centre, University of Leeds, Leeds, England, UK.
Leeds Institute of Health Sciences, University of Leeds, Leeds, England, UK; Choice Modelling Centre, University of Leeds, Leeds, England, UK.
Value Health. 2021 Apr;24(4):575-584. doi: 10.1016/j.jval.2020.10.025. Epub 2021 Jan 23.
Although literature exists on using qualitative methods to generate potential attributes for a discrete choice experiment (DCE), there is little on selecting which attributes to include. We present a case study in which a best-worst scaling case 1 (BWS-1) survey was used to guide attribute selection for a DCE. The case study's context was the decision making of professionals around the choice of augmentative and alternative communication (AAC) systems for children with limited natural speech.
BWS-1 survey attributes were generated from literature reviews and focus groups. DCE attributes were selected from BWS-1 attributes. The selection criteria were: include mostly important attributes; create coherent descriptions of children and AAC systems; address the project's research aims; have an appropriate respondent burden. Attributes' importance was judged using BWS-1 relative importance scores.
The BWS-1 survey included 19 child and 18 AAC device/system attributes and was administered to N = 93 AAC professionals. Four child and five device/system attributes were selected for the DCE, administered to N = 155 AAC professionals.
In this case study BWS-1 results were useful in DCE attribute selection. Four recommendations are made for future studies: define selection criteria for DCE attributes a priori; consider the impact participant's perspective will have on BWS-1 and DCE results; clearly define key terminology at the start of the study and refine it as the study progresses to reflect interim findings; BWS will be useful when there is little existing stated preference work on a topic and/or qualitative work is difficult.
虽然有文献探讨使用定性方法生成离散选择实验(DCE)的潜在属性,但关于如何选择要包含的属性的研究较少。我们提出了一个案例研究,在该研究中,使用最佳最差分级法案例 1(BWS-1)调查来指导 DCE 的属性选择。案例研究的背景是专业人员在为有有限自然语言能力的儿童选择增强和替代沟通(AAC)系统时的决策过程。
BWS-1 调查属性是通过文献回顾和焦点小组生成的。DCE 属性是从 BWS-1 属性中选择的。选择标准为:包含最重要的属性;为儿童和 AAC 系统创建连贯的描述;解决项目的研究目标;具有适当的受访者负担。使用 BWS-1 相对重要性得分来判断属性的重要性。
BWS-1 调查包括 19 个儿童和 18 个 AAC 设备/系统属性,共调查了 93 名 AAC 专业人员。从 BWS-1 调查中选择了 4 个儿童和 5 个设备/系统属性纳入 DCE,共调查了 155 名 AAC 专业人员。
在本案例研究中,BWS-1 结果在 DCE 属性选择中是有用的。为未来的研究提出了四项建议:预先为 DCE 属性定义选择标准;考虑参与者视角对 BWS-1 和 DCE 结果的影响;在研究开始时明确定义关键术语,并在研究进展过程中对其进行细化,以反映中期发现;当关于某个主题的现有既定偏好研究较少且/或定性研究较难时,BWS 将非常有用。