Suppr超能文献

最佳最差标度法在健康领域中对目标物的优先级排序:系统综述。

Best-Worst Scaling and the Prioritization of Objects in Health: A Systematic Review.

机构信息

Department of Health Services Administration and Policy, Temple University College of Public Health, Philadelphia, PA, USA.

Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA.

出版信息

Pharmacoeconomics. 2022 Sep;40(9):883-899. doi: 10.1007/s40273-022-01167-1. Epub 2022 Jul 15.

Abstract

BACKGROUND AND OBJECTIVE

Best-worst scaling is a theory-driven method that can be used to prioritize objects in health. We sought to characterize all studies of best-worst scaling to prioritize objects in health, to assess trends of using best-worst scaling in prioritization over time, and to assess the relationship between a legacy measure of quality (PREFS) and a novel assessment of subjective quality and policy relevance.

METHODS

A systematic review identified studies published through to the end of 2021 that applied best-worst scaling to study priorities in health (PROSPERO CRD42020209745), updating a prior review published in 2016. The PubMed, EBSCOhost, Embase, Scopus, APA PsychInfo, Web of Science, and Google Scholar databases were used and were supplemented by a hand search. Data describing the application, development, design, administration/analysis, quality, and policy relevance were summarized and we tested for trends by comparing articles before and after 1 January, 2017. Multivariate statistics were then used to assess the relationships between PREFS, subjective quality, policy relevance, and other possible indicators.

RESULTS

From a total of 2826 unique papers identified, 165 best-worst scaling studies were included in this review. Applications of best-worst scaling to study priorities in health have continued to grow (p < 0.01) and are now used in all regions of the world, most often to study the priorities of patients/consumers (67%). Several key trends can be observed over time: increased use of pretesting (p < 0.05); increased use of online administration (p < 0.01), and decreased use of paper self-administered surveys (p = 0.02); increased use of heterogeneity analysis (p = 0.02); an increase in having a clearly stated purpose (p < 0.01); and a decrease in comparing respondents to non-respondents (p = 0.01). The average sample size has more than doubled, from 228 to 472 respondents, but formal sample size justifications remain low (5.3%) and unchanged over time (p = 0.68). While the average PREFS score remained unchanged at 3.1/5, both subjective quality and policy relevance trended up, but changes were not statistically significant (p = 0.06 and p = 0.13). Most of the variation in subjective quality was driven by PREFS (R = 0.42), but it was also positively assosciated with policy relevance, heterogeneity analysis, and using a balanced incomplete block design, and was negatively associated with not using developmental methods and an increasing sample size.

CONCLUSIONS

Using best-worst scaling to prioritize objects is now commonly used around the world to assess the priorities of patients and other stakeholders in health. Best practices are clearly emerging for best-worst scaling. Although legacy measures (PREFS) to measure study quality are reasonable, there may need to be new tools to assess both study quality and policy relevance.

摘要

背景与目的

最佳最差标度法是一种理论驱动的方法,可用于对健康中的对象进行优先级排序。我们旨在描述所有应用最佳最差标度法对健康对象进行优先级排序的研究,评估随着时间的推移,最佳最差标度法在优先级排序中的应用趋势,并评估传统质量衡量指标(PREFS)与新的主观质量和政策相关性评估之间的关系。

方法

系统综述通过截至 2021 年底的 PubMed、EBSCOhost、Embase、Scopus、APA PsychInfo、Web of Science 和 Google Scholar 数据库以及手工检索,确定了应用最佳最差标度法研究健康优先级的研究(PROSPERO CRD42020209745),更新了 2016 年发表的先前综述。综述总结了描述应用、开发、设计、管理/分析、质量和政策相关性的研究数据,并通过比较 2017 年 1 月 1 日之前和之后的文章来测试趋势。然后使用多元统计来评估 PREFS、主观质量、政策相关性和其他可能指标之间的关系。

结果

在总共 2826 篇独特的论文中,有 165 篇最佳最差标度研究被纳入本综述。最佳最差标度在健康对象优先级排序中的应用持续增长(p < 0.01),现在已在世界所有地区使用,最常用于研究患者/消费者的优先级(67%)。随着时间的推移,可以观察到几个关键趋势:预测试的使用增加(p < 0.05);在线管理的使用增加(p < 0.01),纸质自填式调查的使用减少(p = 0.02);异质性分析的使用增加(p = 0.02);明确陈述目的的比例增加(p < 0.01);比较应答者和非应答者的比例减少(p = 0.01)。平均样本量从 228 增加到 472 名受访者,增加了一倍以上,但正式的样本量理由仍然很低(5.3%),且随时间变化不变(p = 0.68)。尽管 PREFS 平均得分为 3.1/5,但主观质量和政策相关性都呈上升趋势,但变化无统计学意义(p = 0.06 和 p = 0.13)。主观质量的大部分差异是由 PREFS 驱动的(R = 0.42),但它也与政策相关性、异质性分析和使用平衡不完全区组设计呈正相关,与不使用发展方法和样本量增加呈负相关。

结论

使用最佳最差标度法对对象进行优先级排序,现在在世界各地常用于评估患者和健康其他利益相关者的优先级。最佳最差标度法的最佳实践方法显然正在出现。虽然传统的质量衡量指标(PREFS)可以用来衡量研究质量,但可能需要新的工具来评估研究质量和政策相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/081e/9363399/294a1e22b0ef/40273_2022_1167_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验