Fouda M E, AbdelAty A M, Elwakil A S, Radwan A G, Eltawil A M
Engineering Mathematics and Physics Dept., Faculty of Engineering, Cairo University, Egypt.
Electrical Engineering and Computer Science Dept., University of California-Irvine, Irvine, USA.
J Adv Res. 2020 Aug 26;29:137-145. doi: 10.1016/j.jare.2020.08.007. eCollection 2021 Mar.
Constant Phase Elements (CPEs) have been widely used in many applications due to the extra degree of freedom, which offers new responses and behaviors.
This paper proposes a new programmable CPE realization using resistive crossbar arrays. By programming the resistive devices, different CPEs can be obtained.
The proposed realization can be approximated as a weighted sum of low and high pass filters having the same cut-off frequency (i.e., Lapicque model). The closed-form approximation expression is derived, and then the Flower Pollination Algorithm (FPA) is used to find the optimal values of the network components.
Different design examples are given over the frequency range of 10 rad/sec to prove the ability of this realization achieving any fractional order with less than 5% relative error in both phase and pseudo-capacitance. Monte-Carlo simulations are performed to evaluate the sensitivity of the proposed realization against device variability. In addition, multiple CPEs can be designed at the same time by utilizing the multiple ports of the crossbar array. The proposed realization is compared with two other state-of-art realizations showing comparable results as standalone realization and within fractional-order relaxation oscillator application.
The proposed crossbar realization has proven its ability to realize any CPE with acceptable error. In addition, this multiple-port design offers high flexibility and on-the-fly switching of the CPE.
恒相位元件(CPEs)由于具有额外的自由度,能提供新的响应和特性,已在许多应用中得到广泛使用。
本文提出一种使用电阻交叉阵列实现新型可编程CPE的方法。通过对电阻器件进行编程,可以获得不同的CPE。
所提出的实现方式可近似为具有相同截止频率的低通和高通滤波器的加权和(即拉皮克模型)。推导了闭式近似表达式,然后使用花授粉算法(FPA)来找到网络元件的最优值。
在10弧度/秒的频率范围内给出了不同的设计示例,以证明这种实现方式能够在相位和伪电容方面以小于5%的相对误差实现任何分数阶。进行了蒙特卡洛模拟,以评估所提出的实现方式对器件变化的敏感性。此外,通过利用交叉阵列的多个端口,可以同时设计多个CPE。将所提出的实现方式与其他两种最先进的实现方式进行了比较,结果表明在独立实现以及分数阶弛豫振荡器应用中具有可比的结果。
所提出的交叉阵列实现方式已证明其能够以可接受的误差实现任何CPE。此外,这种多端口设计提供了高灵活性以及CPE的实时切换。