Suppr超能文献

使用随机优化算法从生物电阻抗谱中提取Cole参数。

Extraction of Cole parameters from the electrical bioimpedance spectrum using stochastic optimization algorithms.

作者信息

Gholami-Boroujeny Shiva, Bolic Miodrag

机构信息

School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.

出版信息

Med Biol Eng Comput. 2016 Apr;54(4):643-51. doi: 10.1007/s11517-015-1355-y. Epub 2015 Jul 28.

Abstract

Fitting the measured bioimpedance spectroscopy (BIS) data to the Cole model and then extracting the Cole parameters is a common practice in BIS applications. The extracted Cole parameters then can be analysed as descriptors of tissue electrical properties. To have a better evaluation of physiological or pathological properties of biological tissue, accurate extraction of Cole parameters is of great importance. This paper proposes an improved Cole parameter extraction based on bacterial foraging optimization (BFO) algorithm. We employed simulated datasets to test the performance of the BFO fitting method regarding parameter extraction accuracy and noise sensitivity, and we compared the results with those of a least squares (LS) fitting method. The BFO method showed better robustness to the noise and higher accuracy in terms of extracted parameters. In addition, we applied our method to experimental data where bioimpedance measurements were obtained from forearm in three different positions of the arm. The goal of the experiment was to explore how robust Cole parameters are in classifying position of the arm for different people, and measured at different times. The extracted Cole parameters obtained by LS and BFO methods were applied to different classifiers. Two other evolutionary algorithms, GA and PSO were also used for comparison purpose. We showed that when the classifiers are fed with the extracted feature sets by BFO fitting method, higher accuracy is obtained both when applying on training data and test data.

摘要

将测量得到的生物电阻抗光谱(BIS)数据拟合到科尔模型,然后提取科尔参数,这在BIS应用中是一种常见做法。提取出的科尔参数随后可作为组织电学特性的描述符进行分析。为了更好地评估生物组织的生理或病理特性,准确提取科尔参数至关重要。本文提出了一种基于细菌觅食优化(BFO)算法的改进科尔参数提取方法。我们使用模拟数据集来测试BFO拟合方法在参数提取精度和噪声敏感性方面的性能,并将结果与最小二乘法(LS)拟合方法的结果进行比较。BFO方法在噪声方面表现出更好的鲁棒性,在提取参数方面具有更高的准确性。此外,我们将我们的方法应用于从手臂三个不同位置的前臂获取生物电阻抗测量值的实验数据。该实验的目的是探索科尔参数在为不同人、在不同时间分类手臂位置时的稳健程度。将通过LS和BFO方法提取的科尔参数应用于不同的分类器。另外还使用了两种进化算法,即遗传算法(GA)和粒子群优化算法(PSO)进行比较。我们表明,当分类器输入通过BFO拟合方法提取的特征集时,在应用于训练数据和测试数据时都能获得更高的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验