Rowbotham Jack S, Reeve Holly A, Vincent Kylie A
Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.
ACS Catal. 2021 Mar 5;11(5):2596-2604. doi: 10.1021/acscatal.0c03437. Epub 2021 Feb 11.
Deuterium-labeled nicotinamide cofactors such as [4-H]-NADH can be used as mechanistic probes in biological redox processes and offer a route to the synthesis of selectively [H] labeled chemicals biocatalytic reductive deuteration. Atom-efficient routes to the formation and recycling of [4-H]-NADH are therefore highly desirable but require careful design in order to alleviate the requirement for [H]-labeled reducing agents. In this work, we explore a suite of electrode or hydrogen gas driven catalyst systems for the generation of [4-H]-NADH and consider their use for driving reductive deuteration reactions. Catalysts are evaluated for their chemoselectivity, stereoselectivity, and isotopic selectivity, and it is shown that inclusion of an electronically coupled NAD-reducing enzyme delivers considerable advantages over purely metal based systems, yielding exclusively [4-H]-NADH. We further demonstrate the applicability of these types of [4-H]-NADH recycling systems for driving reductive deuteration reactions, regardless of the facioselectivity of the coupled enzyme.
氘标记的烟酰胺辅因子,如[4-H]-NADH,可作为生物氧化还原过程中的机理探针,并为通过生物催化还原氘化合成选择性[H]标记的化学品提供了一条途径。因此,非常需要原子经济的[4-H]-NADH形成和循环途径,但需要精心设计以减轻对[H]标记还原剂的需求。在这项工作中,我们探索了一系列用于生成[4-H]-NADH的电极或氢气驱动的催化剂系统,并考虑将其用于驱动还原氘化反应。评估了催化剂的化学选择性、立体选择性和同位素选择性,结果表明,包含电子耦合的NAD还原酶比纯金属基系统具有相当大的优势,仅产生[4-H]-NADH。我们进一步证明了这些类型的[4-H]-NADH循环系统在驱动还原氘化反应中的适用性,而与偶联酶的面选择性无关。