Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QR, United Kingdom.
Electron Physical Science Imaging Centre, Diamond Light Source, Oxford, OX11 0DE, United Kingdom.
Angew Chem Int Ed Engl. 2024 Jul 1;63(27):e202404024. doi: 10.1002/anie.202404024. Epub 2024 May 28.
Here we demonstrate the preparation of enzyme-metal biohybrids of NAD reductase with biocatalytically-synthesised small gold nanoparticles (NPs, <10 nm) and core-shell gold-platinum NPs for tandem catalysis. Despite the variety of methods available for NP synthesis, there remains a need for more sustainable strategies which also give precise control over the shape and size of the metal NPs for applications in catalysis, biomedical devices, and electronics. We demonstrate facile biosynthesis of spherical, highly uniform, gold NPs under mild conditions using an isolated enzyme moiety, an NAD reductase, to reduce metal salts while oxidising a nicotinamide-containing cofactor. By subsequently introducing platinum salts, we show that core-shell Au@Pt NPs can then be formed. Catalytic function of these enzyme-Au@Pt NP hybrids was demonstrated for H-driven NADH recycling to support enantioselective ketone reduction by an NADH-dependent alcohol dehydrogenase.
在这里,我们展示了通过生物催化合成的小金纳米粒子(NPs,<10nm)和核壳金-铂 NPs 制备 NAD 还原酶-金属生物杂化物用于串联催化。尽管有多种方法可用于 NP 合成,但仍需要更可持续的策略,以更精确地控制金属 NPs 的形状和大小,从而将其应用于催化、生物医学装置和电子学领域。我们展示了使用分离的酶部分 NAD 还原酶在温和条件下简便地生物合成球形、高度均匀的金 NPs,该酶部分可还原金属盐,同时氧化含有烟酰胺的辅因子。随后引入铂盐,我们表明可以形成核壳 Au@Pt NPs。这些酶-Au@Pt NP 杂化物的催化功能已通过 H 驱动的 NADH 循环回收来支持 NADH 依赖性醇脱氢酶对酮的对映选择性还原得到证明。