Suppr超能文献

地球化学原酶(geozymes)在原始代谢中的作用:金属向生物氧化还原辅因子 NAD 进行特定的非生物氢化物转移。

Role of geochemical protoenzymes (geozymes) in primordial metabolism: specific abiotic hydride transfer by metals to the biological redox cofactor NAD.

机构信息

Institute for Molecular Evolution, Heinrich Heine University, Düsseldorf, Germany.

Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.

出版信息

FEBS J. 2022 Jun;289(11):3148-3162. doi: 10.1111/febs.16329. Epub 2022 Jan 3.

Abstract

Hydrogen gas, H , is generated in serpentinizing hydrothermal systems, where it has supplied electrons and energy for microbial communities since there was liquid water on Earth. In modern metabolism, H is converted by hydrogenases into organically bound hydrides (H ), for example, the cofactor NADH. It transfers hydrides among molecules, serving as an activated and biologically harnessed form of H . In serpentinizing systems, minerals can also bind hydrides and could, in principle, have acted as inorganic hydride donors-possibly as a geochemical protoenzyme, a 'geozyme'- at the origin of metabolism. To test this idea, we investigated the ability of H to reduce NAD in the presence of iron (Fe), cobalt (Co) and nickel (Ni), metals that occur in serpentinizing systems. In the presence of H , all three metals specifically reduce NAD to the biologically relevant form, 1,4-NADH, with up to 100% conversion rates within a few hours under alkaline aqueous conditions at 40 °C. Using Henry's law, the partial pressure of H in our reactions corresponds to 3.6 mm, a concentration observed in many modern serpentinizing systems. While the reduction of NAD by Ni is strictly H -dependent, experiments in heavy water ( H O) indicate that native Fe can reduce NAD both with and without H . The results establish a mechanistic connection between abiotic and biotic hydride donors, indicating that geochemically catalysed, H -dependent NAD reduction could have preceded the hydrogenase-dependent reaction in evolution.

摘要

氢气(H )在蛇纹石化热液系统中产生,自地球存在液态水以来,它为微生物群落提供了电子和能量。在现代代谢中,氢化酶将 H 转化为有机结合的氢化物(H ),例如辅酶 NADH。它在分子间转移氢化物,作为 H 的激活和生物利用形式。在蛇纹石化系统中,矿物质也可以结合氢化物,并且原则上可以作为无机氢化物供体——可能是代谢起源的“地质酶”——一种原始酶。为了验证这一想法,我们研究了 H 在存在铁(Fe)、钴(Co)和镍(Ni)的情况下还原 NAD 的能力,这些金属都存在于蛇纹石化系统中。在 H 的存在下,所有三种金属都能特异性地将 NAD 还原为具有生物学相关性的形式 1,4-NADH,在 40°C 碱性水条件下,几小时内转化率高达 100%。根据亨利定律,我们反应中 H 的分压对应于 3.6mm,这是许多现代蛇纹石化系统中观察到的浓度。虽然 Ni 还原 NAD 严格依赖于 H ,但重水( H O)实验表明,天然 Fe 可以在没有 H 的情况下,也可以在有 H 的情况下还原 NAD。结果在非生物和生物氢化物供体之间建立了一种机制联系,表明在进化过程中,地质催化的 H 依赖的 NAD 还原可能先于氢化酶依赖的反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab64/9306933/49b48c53cf7f/FEBS-289-3148-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验