Suppr超能文献

用于预测早期结直肠癌淋巴结转移的新型预后模型的开发:基于监测、流行病学和最终结果数据库的分析

Development of a Novel Prognostic Model for Predicting Lymph Node Metastasis in Early Colorectal Cancer: Analysis Based on the Surveillance, Epidemiology, and End Results Database.

作者信息

Ahn Ji Hyun, Kwak Min Seob, Lee Hun Hee, Cha Jae Myung, Shin Hyun Phil, Jeon Jung Won, Yoon Jin Young

机构信息

Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, South Korea.

出版信息

Front Oncol. 2021 Mar 25;11:614398. doi: 10.3389/fonc.2021.614398. eCollection 2021.

Abstract

BACKGROUND

Identification of a simplified prediction model for lymph node metastasis (LNM) for patients with early colorectal cancer (CRC) is urgently needed to determine treatment and follow-up strategies. Therefore, in this study, we aimed to develop an accurate predictive model for LNM in early CRC.

METHODS

We analyzed data from the 2004-2016 Surveillance Epidemiology and End Results database to develop and validate prediction models for LNM. Seven models, namely, logistic regression, XGBoost, k-nearest neighbors, classification and regression trees model, support vector machines, neural network, and random forest (RF) models, were used.

RESULTS

A total of 26,733 patients with a diagnosis of early CRC (T1) were analyzed. The models included 8 independent prognostic variables; age at diagnosis, sex, race, primary site, histologic type, tumor grade, and, tumor size. LNM was significantly more frequent in patients with larger tumors, women, younger patients, and patients with more poorly differentiated tumor. The RF model showed the best predictive performance in comparison to the other method, achieving an accuracy of 96.0%, a sensitivity of 99.7%, a specificity of 92.9%, and an area under the curve of 0.991. Tumor size is the most important features in predicting LNM in early CRC.

CONCLUSION

We established a simplified reproducible predictive model for LNM in early CRC that could be used to guide treatment decisions. These findings warrant further confirmation in large prospective clinical trials.

摘要

背景

迫切需要为早期结直肠癌(CRC)患者确定一种简化的淋巴结转移(LNM)预测模型,以确定治疗和随访策略。因此,在本研究中,我们旨在开发一种用于早期CRC中LNM的准确预测模型。

方法

我们分析了2004 - 2016年监测、流行病学和最终结果数据库中的数据,以开发和验证LNM的预测模型。使用了七种模型,即逻辑回归、XGBoost、k近邻、分类与回归树模型、支持向量机、神经网络和随机森林(RF)模型。

结果

共分析了26733例诊断为早期CRC(T1)的患者。这些模型包括8个独立的预后变量;诊断时的年龄、性别、种族、原发部位、组织学类型、肿瘤分级和肿瘤大小。肿瘤较大的患者、女性、年轻患者以及肿瘤分化较差的患者中LNM的发生率明显更高。与其他方法相比,RF模型表现出最佳的预测性能,准确率为96.0%,灵敏度为99.7%,特异性为92.9%,曲线下面积为0.991。肿瘤大小是预测早期CRC中LNM的最重要特征。

结论

我们建立了一种用于早期CRC中LNM的简化可重复预测模型,可用于指导治疗决策。这些发现需要在大型前瞻性临床试验中进一步证实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1e9/8029977/0254c943675c/fonc-11-614398-g001.jpg

相似文献

3
Predicting lymph node metastasis in colorectal cancer: An analysis of influencing factors to develop a risk model.
World J Gastrointest Surg. 2023 Oct 27;15(10):2234-2246. doi: 10.4240/wjgs.v15.i10.2234.
5
Machine learning models for prediction of lymph node metastasis in patients with T1b gastric cancer.
Am J Cancer Res. 2024 Aug 25;14(8):3842-3851. doi: 10.62347/KREL8138. eCollection 2024.
7
Application of Machine Learning Algorithms to Predict Lymph Node Metastasis in Early Gastric Cancer.
Front Med (Lausanne). 2022 Jan 18;8:759013. doi: 10.3389/fmed.2021.759013. eCollection 2021.
8
Risk factors and predictors of lymph nodes metastasis and distant metastasis in newly diagnosed T1 colorectal cancer.
Cancer Med. 2020 Jul;9(14):5095-5113. doi: 10.1002/cam4.3114. Epub 2020 May 29.
9
A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing's Sarcoma.
Front Med (Lausanne). 2022 Apr 6;9:832108. doi: 10.3389/fmed.2022.832108. eCollection 2022.

引用本文的文献

3
Machine Learning Algorithm for Predicting Distant Metastasis of T1 and T2 Gallbladder Cancer Based on SEER Database.
Bioengineering (Basel). 2024 Sep 15;11(9):927. doi: 10.3390/bioengineering11090927.
10
A discrimination model by machine learning to avoid gastrectomy for early gastric cancer.
Ann Gastroenterol Surg. 2023 Jul 13;7(6):913-921. doi: 10.1002/ags3.12714. eCollection 2023 Nov.

本文引用的文献

1
Artificial Intelligence System to Determine Risk of T1 Colorectal Cancer Metastasis to Lymph Node.
Gastroenterology. 2021 Mar;160(4):1075-1084.e2. doi: 10.1053/j.gastro.2020.09.027. Epub 2020 Sep 24.
2
The 2019 WHO classification of tumours of the digestive system.
Histopathology. 2020 Jan;76(2):182-188. doi: 10.1111/his.13975. Epub 2019 Nov 13.
3
Prediction of early colorectal cancer metastasis by machine learning using digital slide images.
Comput Methods Programs Biomed. 2019 Sep;178:155-161. doi: 10.1016/j.cmpb.2019.06.022. Epub 2019 Jun 22.
4
Predicting systemic spread in early colorectal cancer: Can we do better?
World J Gastroenterol. 2019 Jun 21;25(23):2887-2897. doi: 10.3748/wjg.v25.i23.2887.
6
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.
7
Prognostic value of lymph node metastasis in patients with T1-stage colorectal cancer from multiple centers in China.
World J Gastroenterol. 2017 Dec 28;23(48):8582-8590. doi: 10.3748/wjg.v23.i48.8582.
9
A deep learning-based multi-model ensemble method for cancer prediction.
Comput Methods Programs Biomed. 2018 Jan;153:1-9. doi: 10.1016/j.cmpb.2017.09.005. Epub 2017 Sep 14.
10
Screening for Colorectal Neoplasia.
N Engl J Med. 2017 Jan 12;376(2):149-156. doi: 10.1056/NEJMcp1512286.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验