Barbatti Mario
Aix Marseille University, CNRS, ICR, Marseille, France.
J Chem Theory Comput. 2021 May 11;17(5):3010-3018. doi: 10.1021/acs.jctc.1c00012. Epub 2021 Apr 12.
The most common surface hopping dynamics algorithms require velocity adjustment after hopping to ensure total-energy conservation. Based on the semiclassical analysis, this adjustment must be made parallel to the nonadiabatic coupling vector's direction. Nevertheless, this direction is not always known, and the common practice has been to adjust the velocity in either the linear momentum or velocity directions. This paper benchmarks surface hopping dynamics of photoexcited ethylene with velocity adjustment in several directions, including those of the nonadiabatic coupling vector, the momentum, and the energy gradient difference. It is shown that differences in time constants and structural evolution fall within the statistical uncertainty of the method considering up to 500 trajectories in each dynamics set, rendering the three approaches statistically equivalent. For larger ensembles beyond 1000 trajectories, significant differences between the results arise, limiting the validity of adjustment in alternative directions. Other possible adjustment directions (velocity, single-state gradients, angular momentum) are evaluated as well. Given the small size of ethylene, the results reported in this paper should be considered an upper limit for the error caused by the choice of the velocity-adjustment direction on surface hopping dynamics.
最常见的表面跳跃动力学算法需要在跳跃后进行速度调整,以确保总能量守恒。基于半经典分析,这种调整必须与非绝热耦合矢量的方向平行进行。然而,这个方向并不总是已知的,常见的做法是在动量或速度方向上调整速度。本文对光激发乙烯的表面跳跃动力学进行了基准测试,在几个方向上进行速度调整,包括非绝热耦合矢量方向、动量方向和能量梯度差方向。结果表明,在每个动力学集合中考虑多达500条轨迹时,时间常数和结构演化的差异落在该方法的统计不确定性范围内,这使得这三种方法在统计上是等效的。对于超过1000条轨迹的更大集合,结果之间出现了显著差异,限制了在其他方向上进行调整的有效性。还评估了其他可能的调整方向(速度、单态梯度、角动量)。鉴于乙烯分子尺寸较小,本文报道的结果应被视为表面跳跃动力学中速度调整方向选择所引起误差的上限。