Am J Ophthalmol. 2021 Aug;228:165-173. doi: 10.1016/j.ajo.2021.03.037. Epub 2021 Apr 15.
To determine classification criteria for varicella zoster virus (VZV) anterior uveitis.
Machine learning of cases with VZV anterior uveitis and 8 other anterior uveitides.
Cases of anterior uveitides were collected in an informatics-designed preliminary database, and a final database was constructed of cases achieving supermajority agreement on the diagnosis, using formal consensus techniques. Cases were split into a training set and a validation set. Machine learning using multinomial logistic regression was used on the training set to determine a parsimonious set of criteria that minimized the misclassification rate among the anterior uveitides. The resulting criteria were evaluated on the validation set.
One thousand eighty-three cases of anterior uveitides, including 123 cases of VZV anterior uveitis, were evaluated by machine learning. The overall accuracy for anterior uveitides was 97.5% in the training set and 96.7% in the validation set (95% confidence interval 92.4, 98.6). Key criteria for VZV anterior uveitis included unilateral anterior uveitis with either (1) positive aqueous humor polymerase chain reaction assay for VZV; (2) sectoral iris atrophy in a patient ≥60 years of age; or (3) concurrent or recent dermatomal herpes zoster. The misclassification rates for VZV anterior uveitis were 0.9% in the training set and 0% in the validation set, respectively.
The criteria for VZV anterior uveitis had a low misclassification rate and seemed to perform sufficiently well for use in clinical and translational research.
确定水痘带状疱疹病毒(VZV)前葡萄膜炎的分类标准。
对VZV前葡萄膜炎病例及其他8种前葡萄膜炎进行机器学习。
在前葡萄膜炎病例信息学设计的初步数据库中收集病例,并使用正式的共识技术构建最终数据库,该数据库由在诊断上达成绝大多数共识的病例组成。病例被分为训练集和验证集。在训练集上使用多项逻辑回归进行机器学习,以确定一组简约的标准,使前葡萄膜炎之间的错误分类率最小化。在验证集上评估所得标准。
通过机器学习评估了1083例前葡萄膜炎病例,其中包括123例VZV前葡萄膜炎。训练集中前葡萄膜炎的总体准确率为97.5%,验证集中为96.7%(95%置信区间92.4, 98.6)。VZV前葡萄膜炎的关键标准包括单侧前葡萄膜炎,伴有以下情况之一:(1)房水聚合酶链反应检测VZV呈阳性;(2)年龄≥60岁患者的扇形虹膜萎缩;或(3)并发或近期有皮节带状疱疹。训练集中VZV前葡萄膜炎的错误分类率分别为0.9%,验证集中为0%。
VZV前葡萄膜炎的标准错误分类率较低,在临床和转化研究中似乎表现良好。