Am J Ophthalmol. 2021 Aug;228:117-125. doi: 10.1016/j.ajo.2021.03.049. Epub 2021 Apr 15.
The purpose of this study was to determine classification criteria for spondyloarthritis/HLA-B27-associated anterior uveitis DESIGN: Machine learning of cases with spondyloarthritis/HLA-B27-associated anterior uveitis and 8 other anterior uveitides.
Cases of anterior uveitides were collected in an informatics-designed preliminary database, and a final database was constructed of cases achieving supermajority agreement on the diagnosis, using formal consensus techniques. Cases were split into a training set and a validation set. Machine learning using multinomial logistic regression was used in the training set to determine a parsimonious set of criteria that minimized the misclassification rate among the anterior uveitides. The resulting criteria were evaluated in the validation set.
A total of 1,083 cases of anterior uveitides, including 184 cases of spondyloarthritis/HLA-B27-associated anterior uveitis, were evaluated by machine learning. The overall accuracy for anterior uveitides was 97.5% in the training set and 96.7% in the validation set (95% CI: 92.4-98.6). Key criteria for spondyloarthritis/HLA-B27-associated anterior uveitis included 1) acute or recurrent acute unilateral or unilateral alternating anterior uveitis with either spondyloarthritis or a positive test result for HLA-B27; or 2) chronic anterior uveitis with a history of the classic course and either spondyloarthritis or HLA-B27; or 3) anterior uveitis with both spondyloarthritis and HLA-B27. The misclassification rates for spondyloarthritis/HLA-B27-associated anterior uveitis were 0% in the training set and 3.6% in the validation set.
The criteria for spondyloarthritis/HLA-B27-associated anterior uveitis had a low misclassification rate and appeared to perform well enough for use in clinical and translational research.
本研究旨在确定强直性脊柱炎/ HLA-B27 相关前葡萄膜炎的分类标准。
强直性脊柱炎/ HLA-B27 相关前葡萄膜炎和其他 8 种前葡萄膜炎病例的机器学习。
在前葡萄膜炎的信息学设计初步数据库中收集病例,并使用正式共识技术对诊断达成多数共识的病例构建最终数据库。将病例分为训练集和验证集。在训练集中,使用多项逻辑回归进行机器学习,以确定一组简化的标准,使前葡萄膜炎的分类错误率最小化。在验证集中评估得出的标准。
共评估了 1083 例前葡萄膜炎病例,其中 184 例为强直性脊柱炎/ HLA-B27 相关前葡萄膜炎。机器学习的整体准确率在训练集和验证集分别为 97.5%和 96.7%(95%置信区间:92.4-98.6)。强直性脊柱炎/ HLA-B27 相关前葡萄膜炎的关键标准包括 1)急性或复发性单侧或单侧交替性急性单侧或单侧交替性前葡萄膜炎,伴有强直性脊柱炎或 HLA-B27 阳性试验结果;或 2)慢性前葡萄膜炎,具有经典病程史,伴有强直性脊柱炎或 HLA-B27;或 3)前葡萄膜炎同时伴有强直性脊柱炎和 HLA-B27。在训练集中,强直性脊柱炎/ HLA-B27 相关前葡萄膜炎的分类错误率为 0%,在验证集中为 3.6%。
强直性脊柱炎/ HLA-B27 相关前葡萄膜炎的标准分类错误率较低,似乎足以用于临床和转化研究。