Am J Ophthalmol. 2021 Aug;228:89-95. doi: 10.1016/j.ajo.2021.03.060. Epub 2021 Apr 9.
To determine classification criteria for cytomegalovirus (CMV) anterior uveitis.
Machine learning of cases with CMV anterior uveitis and 8 other anterior uveitides.
Cases of anterior uveitides were collected in an informatics-designed preliminary database, and a final database was constructed of cases achieving supermajority agreement on the diagnosis, using formal consensus techniques. Cases were split into a training set and a validation set. Machine learning using multinomial logistic regression was used on the training set to determine a parsimonious set of criteria that minimized the misclassification rate among the anterior uveitides. The resulting criteria were evaluated on the validation set.
One thousand eighty-three cases of anterior uveitides, including 89 cases of CMV anterior uveitis, were evaluated by machine learning. The overall accuracy for anterior uveitides was 97.5% in the training set and 96.7% in the validation set (95% confidence interval 92.4, 98.6). Key criteria for CMV anterior uveitis included unilateral anterior uveitis with a positive aqueous humor polymerase chain reaction assay for CMV. No clinical features reliably diagnosed CMV anterior uveitis. The misclassification rates for CMV anterior uveitis were 1.3% in the training set and 0% in the validation set.
The criteria for CMV anterior uveitis had a low misclassification rate and seemed to perform sufficiently well for use in clinical and translational research.
确定巨细胞病毒(CMV)前葡萄膜炎的分类标准。
CMV 前葡萄膜炎和其他 8 种前葡萄膜炎病例的机器学习。
在信息学设计的初步数据库中收集前葡萄膜炎病例,并使用正式共识技术对诊断达成多数共识的病例构建最终数据库。将病例分为训练集和验证集。在训练集上使用多项逻辑回归进行机器学习,以确定一组能使前葡萄膜炎分类错误率最小化的简化标准。在验证集上评估得出的标准。
通过机器学习评估了 1083 例前葡萄膜炎病例,包括 89 例 CMV 前葡萄膜炎。在训练集中,前葡萄膜炎的总体准确率为 97.5%,在验证集中为 96.7%(95%置信区间为 92.4%,98.6%)。CMV 前葡萄膜炎的关键标准包括单侧前葡萄膜炎和 CMV 眼内液聚合酶链反应检测阳性。没有任何临床特征可可靠地诊断 CMV 前葡萄膜炎。CMV 前葡萄膜炎的分类错误率在训练集中为 1.3%,在验证集中为 0%。
CMV 前葡萄膜炎的分类标准分类错误率较低,似乎足以用于临床和转化研究。