Suppr超能文献

基于诊断机器学习的单靶点或多靶点生物筛选化合物分析。

Analysis of Biological Screening Compounds with Single- or Multi-Target Activity via Diagnostic Machine Learning.

机构信息

LIMES Program Unit Chemical Biology and Medicinal Chemistry, Department of Life Science Informatics, B-IT, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany.

出版信息

Biomolecules. 2020 Nov 27;10(12):1605. doi: 10.3390/biom10121605.

Abstract

Predicting compounds with single- and multi-target activity and exploring origins of compound specificity and promiscuity is of high interest for chemical biology and drug discovery. We present a large-scale analysis of compound promiscuity including two major components. First, high-confidence datasets of compounds with multi- and corresponding single-target activity were extracted from biological screening data. Positive and negative assay results were taken into account and data completeness was ensured. Second, these datasets were investigated using diagnostic machine learning to systematically distinguish between compounds with multi- and single-target activity. Models built on the basis of chemical structure consistently produced meaningful predictions. These findings provided evidence for the presence of structural features differentiating promiscuous and non-promiscuous compounds. Machine learning under varying conditions using modified datasets revealed a strong influence of nearest neighbor relationship on the predictions. Many multi-target compounds were found to be more similar to other multi-target compounds than single-target compounds and vice versa, which resulted in consistently accurate predictions. The results of our study confirm the presence of structural relationships that differentiate promiscuous and non-promiscuous compounds.

摘要

预测具有单靶点和多靶点活性的化合物,并探索化合物特异性和混杂性的起源,这对化学生物学和药物发现具有重要意义。我们对化合物混杂性进行了大规模分析,包括两个主要部分。首先,从生物筛选数据中提取了具有多靶点和相应单靶点活性的高可信度化合物数据集。考虑了阳性和阴性的测定结果,并确保了数据的完整性。其次,使用诊断机器学习对这些数据集进行了调查,以系统地区分具有多靶点和单靶点活性的化合物。基于化学结构构建的模型始终产生有意义的预测。这些发现为区分混杂和非混杂化合物的结构特征的存在提供了证据。使用修改后的数据集在不同条件下进行机器学习,揭示了最近邻关系对预测的强烈影响。许多多靶点化合物与其他多靶点化合物比与单靶点化合物更相似,反之亦然,这导致了始终准确的预测。我们研究的结果证实了存在区分混杂和非混杂化合物的结构关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5049/7761051/d62ce5e609b3/biomolecules-10-01605-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验