Suppr超能文献

预测潜在的siRNA和人类miRNA序列以沉默与orf1ab相关的基因,用于未来抗SARS-CoV-2的治疗。

Computational prediction of potential siRNA and human miRNA sequences to silence orf1ab associated genes for future therapeutics against SARS-CoV-2.

作者信息

Hasan Mahedi, Ashik Arafat Islam, Chowdhury Md Belal, Tasnim Atiya Tahira, Nishat Zakia Sultana, Hossain Tanvir, Ahmed Shamim

机构信息

Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.

出版信息

Inform Med Unlocked. 2021;24:100569. doi: 10.1016/j.imu.2021.100569. Epub 2021 Apr 8.

Abstract

The coronavirus disease 2019 (COVID-19) is an ongoing pandemic caused by an RNA virus termed as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). SARS-CoV-2 possesses an almost 30kbp long genome. The genome contains open-reading frame 1ab (ORF1ab) gene, the largest one of SARS-CoV-2, encoding polyprotein PP1ab and PP1a responsible for viral transcription and replication. Several vaccines have already been approved by the respective authorities over the world to develop herd immunity among the population. In consonance with this effort, RNA interference (RNAi) technology holds the possibility to strengthen the fight against this virus. Here, we have implemented a computational approach to predict potential short interfering RNAs including small interfering RNAs (siRNAs) and microRNAs (miRNAs), which are presumed to be intrinsically active against SARS-CoV-2. In doing so, we have screened miRNA library and siRNA library targeting the ORF1ab gene. We predicted the potential miRNA and siRNA candidate molecules utilizing an array of bioinformatic tools. By extending the analysis, out of 24 potential pre-miRNA hairpins and 131 siRNAs, 12 human miRNA and 10 siRNA molecules were sorted as potential therapeutic agents against SARS-CoV-2 based on their GC content, melting temperature (T), heat capacity (C), hybridization and minimal free energy (MFE) of hybridization. This computational study is focused on lessening the extensive time and labor needed in conventional trial and error based wet lab methods and it has the potential to act as a decent base for future researchers to develop a successful RNAi therapeutic.

摘要

2019年冠状病毒病(COVID-19)是由一种名为严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的RNA病毒引起的正在流行的疾病。SARS-CoV-2拥有一个近30千碱基对长的基因组。该基因组包含开放阅读框1ab(ORF1ab)基因,这是SARS-CoV-2中最大的基因,编码负责病毒转录和复制的多蛋白PP1ab和PP1a。世界各国的相关当局已经批准了几种疫苗,以在人群中建立群体免疫。与此努力相一致,RNA干扰(RNAi)技术有可能加强对抗这种病毒的斗争。在这里,我们实施了一种计算方法来预测潜在的短干扰RNA,包括小干扰RNA(siRNA)和微小RNA(miRNA),它们被认为对SARS-CoV-2具有内在活性。在此过程中,我们筛选了靶向ORF1ab基因的miRNA文库和siRNA文库。我们利用一系列生物信息学工具预测了潜在的miRNA和siRNA候选分子。通过进一步分析,在24个潜在的前体miRNA发夹和131个siRNA中,根据它们的GC含量、解链温度(T)、热容(C)、杂交和杂交最小自由能(MFE),筛选出12个人类miRNA和10个siRNA分子作为对抗SARS-CoV-2的潜在治疗剂。这项计算研究的重点是减少传统的基于试错的湿实验室方法所需的大量时间和劳动力,并且它有可能为未来的研究人员开发成功的RNAi疗法奠定良好的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ce/8028608/04523ddf9710/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验