Suppr超能文献

铵离子插层诱导富含1T相的膨胀二硒化钼用于改善锂离子存储性能

Ammonium Intercalation Induced Expanded 1T-Rich Molybdenum Diselenides for Improved Lithium Ion Storage.

作者信息

Zhou Ruicong, Wang Hongchen, Chang Jin, Yu Chenyang, Dai Henghan, Chen Qiang, Zhou Jinyuan, Yu Haidong, Sun Gengzhi, Huang Wei

机构信息

Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China.

School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2021 Apr 21;13(15):17459-17466. doi: 10.1021/acsami.0c22923. Epub 2021 Apr 13.

Abstract

Transition metal dichalcogenides (TMDs), particularly molybdenum diselenides (MoSe), have the merits of their unique two-dimensional (2D) layered structures, large interlayer spacing (∼0.64 nm), good electrical conductivities, and high theoretical capacities when applied in lithium-ion batteries (LIBs) as anode materials. However, MoSe remains suffering from inferior stability as well as unsatisfactory rate capability because of the unavoidable volume expansion and sluggish charge transport during lithiation-delithiation cycles. Herein, we develop a simultaneous reduction-intercalation strategy to synthesize expanded MoSe (e-MoSe) with an interlayer spacing of 0.98 nm and a rich 1T phase (53.7%) by rationally selecting the safe precursors of ethylenediamine (NHCHNH), selenium dioxide (SeO), and sodium molybdate (NaMoO). It is noteworthy that NHCHNH can effectively reduce SeO and MoO forming MoSe nanosheets; in the meantime, the generated ammonium (NH) efficiently intercalates between MoSe layers, leading to charge transfer, thus stabilizing 1T phases. The obtained e-MoSe exhibits high capacities of 778.99 and 611.40 mAh g at 0.2 and 1 C, respectively, together with excellent cycling stability (retaining >90% initial capacity at 0.2 C over 100 charge-discharge cycles). It is believed that the material design strategy proposed in this paper provides a favorable reference for the synthesis of other transition metal selenides with improved electrochemical performance for battery applications.

摘要

过渡金属二硫属化物(TMDs),特别是二硒化钼(MoSe₂),具有独特的二维(2D)层状结构、较大的层间距(约0.64 nm)、良好的导电性以及在锂离子电池(LIBs)中作为负极材料应用时的高理论容量等优点。然而,由于在锂化-脱锂循环过程中不可避免的体积膨胀和缓慢的电荷传输,MoSe₂仍然存在稳定性较差以及倍率性能不理想的问题。在此,我们通过合理选择乙二胺(NH₂CH₂NH₂)、二氧化硒(SeO₂)和钼酸钠(Na₂MoO₄)等安全前驱体,开发了一种同时还原-插层策略,以合成层间距为0.98 nm且富含1T相(53.7%)的膨胀MoSe₂(e-MoSe₂)。值得注意的是,NH₂CH₂NH₂可以有效还原SeO₂和MoO₄²⁻形成MoSe₂纳米片;同时,生成的铵根离子(NH₄⁺)有效地插入到MoSe₂层间,导致电荷转移,从而稳定1T相。所制备的e-MoSe₂在0.2 C和1 C时分别表现出778.99和611.40 mAh g的高容量,以及优异的循环稳定性(在0.2 C下经过100次充放电循环后仍保持>90%的初始容量)。相信本文提出的材料设计策略为合成其他具有改善电池应用电化学性能的过渡金属硒化物提供了有益的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验