Suppr超能文献

Frequent loss and restoration of antibiotic production by Streptomyces lasaliensis.

作者信息

Kinashi H, Otten S L, Duncan J S, Hutchinson C R

机构信息

School of Pharmacy, University of Wisconsin, Madison 53706.

出版信息

J Antibiot (Tokyo). 1988 May;41(5):624-37. doi: 10.7164/antibiotics.41.624.

Abstract

Antibiotic nonproducing variants of Streptomyces lasaliensis NRRL 3382R, which makes the polyether antibiotic lasalocid A (Las) and the quinoxaline antibiotic echinomycin (Ech), arose at a frequency of 3-11% after treatment with three different mutagens or regeneration of protoplasts compared with a spontaneous frequency of less than 0.1%. Cosynthesis of lasalocid A was not observed upon testing a large number of Las- mutants in different pair-wise combinations, nor did these mutants accumulate probable intermediates of lasalocid A biosynthesis. These results suggest that loss of the las genes or their expression is induced at a high frequency by mutagenic treatments. In fusions of protoplasts of a strain with the las+ ech+ spo+ nic-1 rif-3 markers with strains bearing the Las- LasS Ech- Bld- (or spo+) str-1 markers, Las+ Ech+ Spo+ StrR progeny were produced at a 61-89% frequency compared with a 1-9% frequency of StrR antibiotic producing progeny with the nic-1 or rif-3 genotypes. The more frequent restoration of antibiotic production than prototrophy or rifampicin sensitivity indicates that these antibiotic characters did not behave as normal chromosomal markers. Therefore the genetic instability might be due to the involvement of a plasmid in antibiotic production. The apparent lack of infectious transfer of the Las+ character to Las- parents in conjugal matings between the few strains tested and no correlation between the presence of a large plasmid, pKSL, and lasalocid A production in several strains of S. lasaliensis do not favor the latter hypothesis, but they do not conclusively disprove it. Consequently, we suggest that a plasmid or another mobile genetic element is controlling antibiotic production in S. lasaliensis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验