Suppr超能文献

探索用于从单目高光谱图像进行相对深度估计的色差和散焦模糊

Exploring Chromatic Aberration and Defocus Blur for Relative Depth Estimation From Monocular Hyperspectral Image.

作者信息

Zia Ali, Zhou Jun, Gao Yongsheng

出版信息

IEEE Trans Image Process. 2021;30:4357-4370. doi: 10.1109/TIP.2021.3071682. Epub 2021 Apr 21.

Abstract

This article investigates spectral chromatic and spatial defocus aberration in a monocular hyperspectral image (HSI) and proposes methods on how these cues can be utilized for relative depth estimation. The main aim of this work is to develop a framework by exploring intrinsic and extrinsic reflectance properties in HSI that can be useful for depth estimation. Depth estimation from a monocular image is a challenging task. An additional level of difficulty is added due to low resolution and noises in hyperspectral data. Our contribution to handling depth estimation in HSI is threefold. Firstly, we propose that change in focus across band images of HSI due to chromatic aberration and band-wise defocus blur can be integrated for depth estimation. Novel methods are developed to estimate sparse depth maps based on different integration models. Secondly, by adopting manifold learning, an effective objective function is developed to combine all sparse depth maps into a final optimized sparse depth map. Lastly, a new dense depth map generation approach is proposed, which extrapolate sparse depth cues by using material-based properties on graph Laplacian. Experimental results show that our methods successfully exploit HSI properties to generate depth cues. We also compare our method with state-of-the-art RGB image-based approaches, which shows that our methods produce better sparse and dense depth maps than those from the benchmark methods.

摘要

本文研究了单目高光谱图像(HSI)中的光谱色度和空间离焦像差,并提出了如何利用这些线索进行相对深度估计的方法。这项工作的主要目的是通过探索HSI中可用于深度估计的内在和外在反射特性来开发一个框架。从单目图像进行深度估计是一项具有挑战性的任务。由于高光谱数据的低分辨率和噪声,难度进一步增加。我们在处理HSI中的深度估计方面的贡献有三个方面。首先,我们提出,由于色差和波段-wise离焦模糊导致的HSI波段图像间焦点变化可用于深度估计。基于不同的积分模型开发了新颖的方法来估计稀疏深度图。其次,通过采用流形学习,开发了一个有效的目标函数,将所有稀疏深度图组合成最终优化的稀疏深度图。最后,提出了一种新的密集深度图生成方法,该方法利用基于材料的图拉普拉斯属性来外推稀疏深度线索。实验结果表明,我们的方法成功地利用了HSI属性来生成深度线索。我们还将我们的方法与基于RGB图像的最新方法进行了比较,结果表明我们的方法生成的稀疏和密集深度图比基准方法更好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验