Suppr超能文献

DAN:用于3D形状识别的深度注意力网络。

DAN: Deep-Attention Network for 3D Shape Recognition.

作者信息

Nie Weizhi, Zhao Yue, Song Dan, Gao Yue

出版信息

IEEE Trans Image Process. 2021;30:4371-4383. doi: 10.1109/TIP.2021.3071687. Epub 2021 Apr 21.

Abstract

Due to the wide applications in a rapidly increasing number of different fields, 3D shape recognition has become a hot topic in the computer vision field. Many approaches have been proposed in recent years. However, there remain huge challenges in two aspects: exploring the effective representation of 3D shapes and reducing the redundant complexity of 3D shapes. In this paper, we propose a novel deep-attention network (DAN) for 3D shape representation based on multiview information. More specifically, we introduce the attention mechanism to construct a deep multiattention network that has advantages in two aspects: 1) information selection, in which DAN utilizes the self-attention mechanism to update the feature vector of each view, effectively reducing the redundant information, and 2) information fusion, in which DAN applies attention mechanism that can save more effective information by considering the correlations among views. Meanwhile, deep network structure can fully consider the correlations to continuously fuse effective information. To validate the effectiveness of our proposed method, we conduct experiments on the public 3D shape datasets: ModelNet40, ModelNet10, and ShapeNetCore55. Experimental results and comparison with state-of-the-art methods demonstrate the superiority of our proposed method. Code is released on https://github.com/RiDang/DANN.

摘要

由于在越来越多不同领域的广泛应用,三维形状识别已成为计算机视觉领域的一个热门话题。近年来已经提出了许多方法。然而,在两个方面仍然存在巨大挑战:探索三维形状的有效表示以及降低三维形状的冗余复杂性。在本文中,我们提出了一种基于多视图信息的用于三维形状表示的新型深度注意力网络(DAN)。更具体地说,我们引入注意力机制来构建一个深度多注意力网络,该网络在两个方面具有优势:1)信息选择,其中DAN利用自注意力机制更新每个视图的特征向量,有效减少冗余信息;2)信息融合,其中DAN应用注意力机制,通过考虑视图之间的相关性来保存更多有效信息。同时,深度网络结构可以充分考虑相关性以不断融合有效信息。为了验证我们提出的方法的有效性,我们在公共三维形状数据集:ModelNet40、ModelNet10和ShapeNetCore55上进行了实验。实验结果以及与现有方法的比较证明了我们提出的方法的优越性。代码已在https://github.com/RiDang/DANN上发布。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验