College of Information Engineering, Shanghai Maritime University, Shanghai, China.
Shanghai Ship and Shipping Research Institute, Shanghai, China.
PLoS One. 2023 Feb 2;18(2):e0281275. doi: 10.1371/journal.pone.0281275. eCollection 2023.
Vector-based retrieval have been widely adopted to process online users' diverse interests for recommendations. However, most of them utilize a single vector to represent user multiple interests (UMI), inevitably impairing the accuracy and diversity of item retrieval. In addition, existing work often does not take into account the scale and speed of the model, and high-dimensional user representation vectors need high computation cost, leading to inefficient item retrieval. In this paper, we propose a novel lightweight multi-interest retrieval network (MIRN) by incorporating sequence-to-interest Expectation Maximization (EM) routing to deal with users' multiple interests. By leveraging representation ability of the Capsule network, we design a multi-interest representation learning module that clusters multiple Capsule vectors from the user's behavior sequence to represent each of their interests respectively. In addition, we introduce a composite capsule clustering strategy for the Capsule network framework to reduce the scale of the network model. Furthermore, a Capsule-aware module incorporating an attention mechanism has been developed to guide model training by adaptively learning multiple Capsule vectors of user representations. The experimental results demonstrate MIRN outperforms the state-of-the-art approaches for item retrieval and gains significant improvements in terms of metric evaluations.
基于向量的检索方法已被广泛应用于处理在线用户多样化的兴趣以进行推荐。然而,大多数方法都使用单个向量来表示用户的多个兴趣(UMI),这不可避免地会降低物品检索的准确性和多样性。此外,现有的工作通常不考虑模型的规模和速度,而高维的用户表示向量需要较高的计算成本,导致物品检索效率低下。在本文中,我们提出了一种新颖的轻量级多兴趣检索网络(MIRN),通过引入序列到兴趣的期望最大化(EM)路由来处理用户的多个兴趣。利用胶囊网络的表示能力,我们设计了一个多兴趣表示学习模块,该模块从用户的行为序列中聚类多个胶囊向量,分别表示他们的每个兴趣。此外,我们引入了一种复合胶囊聚类策略来减少网络模型的规模。此外,我们还开发了一个胶囊感知模块,该模块结合注意力机制,通过自适应地学习用户表示的多个胶囊向量来指导模型训练。实验结果表明,MIRN 在物品检索方面优于最新方法,并在指标评估方面取得了显著的改进。