Suppr超能文献

MIRN:一种带有序列到兴趣 EM 路由的多兴趣检索网络。

MIRN: A multi-interest retrieval network with sequence-to-interest EM routing.

机构信息

College of Information Engineering, Shanghai Maritime University, Shanghai, China.

Shanghai Ship and Shipping Research Institute, Shanghai, China.

出版信息

PLoS One. 2023 Feb 2;18(2):e0281275. doi: 10.1371/journal.pone.0281275. eCollection 2023.

Abstract

Vector-based retrieval have been widely adopted to process online users' diverse interests for recommendations. However, most of them utilize a single vector to represent user multiple interests (UMI), inevitably impairing the accuracy and diversity of item retrieval. In addition, existing work often does not take into account the scale and speed of the model, and high-dimensional user representation vectors need high computation cost, leading to inefficient item retrieval. In this paper, we propose a novel lightweight multi-interest retrieval network (MIRN) by incorporating sequence-to-interest Expectation Maximization (EM) routing to deal with users' multiple interests. By leveraging representation ability of the Capsule network, we design a multi-interest representation learning module that clusters multiple Capsule vectors from the user's behavior sequence to represent each of their interests respectively. In addition, we introduce a composite capsule clustering strategy for the Capsule network framework to reduce the scale of the network model. Furthermore, a Capsule-aware module incorporating an attention mechanism has been developed to guide model training by adaptively learning multiple Capsule vectors of user representations. The experimental results demonstrate MIRN outperforms the state-of-the-art approaches for item retrieval and gains significant improvements in terms of metric evaluations.

摘要

基于向量的检索方法已被广泛应用于处理在线用户多样化的兴趣以进行推荐。然而,大多数方法都使用单个向量来表示用户的多个兴趣(UMI),这不可避免地会降低物品检索的准确性和多样性。此外,现有的工作通常不考虑模型的规模和速度,而高维的用户表示向量需要较高的计算成本,导致物品检索效率低下。在本文中,我们提出了一种新颖的轻量级多兴趣检索网络(MIRN),通过引入序列到兴趣的期望最大化(EM)路由来处理用户的多个兴趣。利用胶囊网络的表示能力,我们设计了一个多兴趣表示学习模块,该模块从用户的行为序列中聚类多个胶囊向量,分别表示他们的每个兴趣。此外,我们引入了一种复合胶囊聚类策略来减少网络模型的规模。此外,我们还开发了一个胶囊感知模块,该模块结合注意力机制,通过自适应地学习用户表示的多个胶囊向量来指导模型训练。实验结果表明,MIRN 在物品检索方面优于最新方法,并在指标评估方面取得了显著的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b99/9894450/f4ebeea0d7db/pone.0281275.g001.jpg

相似文献

2
Multi-Aspect enhanced Graph Neural Networks for recommendation.用于推荐的多方面增强图神经网络
Neural Netw. 2023 Jan;157:90-102. doi: 10.1016/j.neunet.2022.10.001. Epub 2022 Oct 14.
3
Improved Diversity-Promoting Collaborative Metric Learning for Recommendation.用于推荐的改进的促进多样性协作度量学习
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):9004-9022. doi: 10.1109/TPAMI.2024.3412687. Epub 2024 Nov 6.
5
GCRec: Graph-Augmented Capsule Network for Next-Item Recommendation.
IEEE Trans Neural Netw Learn Syst. 2023 Dec;34(12):10164-10177. doi: 10.1109/TNNLS.2022.3164982. Epub 2023 Nov 30.
6
On Deep Learning for Trust-Aware Recommendations in Social Networks.社交网络中基于深度学习的信任感知推荐
IEEE Trans Neural Netw Learn Syst. 2017 May;28(5):1164-1177. doi: 10.1109/TNNLS.2016.2514368. Epub 2016 Feb 19.
7
Dynamic and Static Representation Learning Network for Recommendation.用于推荐的动态与静态表示学习网络
IEEE Trans Neural Netw Learn Syst. 2022 Jun 2;PP. doi: 10.1109/TNNLS.2022.3177611.
9
Adaptive Deep Modeling of Users and Items Using Side Information for Recommendation.利用侧信息进行推荐的用户和项目的自适应深度建模。
IEEE Trans Neural Netw Learn Syst. 2020 Mar;31(3):737-748. doi: 10.1109/TNNLS.2019.2909432. Epub 2019 Jun 12.

本文引用的文献

1
DAN: Deep-Attention Network for 3D Shape Recognition.DAN:用于3D形状识别的深度注意力网络。
IEEE Trans Image Process. 2021;30:4371-4383. doi: 10.1109/TIP.2021.3071687. Epub 2021 Apr 21.
2
Deep Representation Learning for Social Network Analysis.用于社交网络分析的深度表征学习
Front Big Data. 2019 Apr 3;2:2. doi: 10.3389/fdata.2019.00002. eCollection 2019.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验