Suppr超能文献

机器学习算法预测脂肪肝疾病。

Machine Learning Algorithms for Predicting Fatty Liver Disease.

机构信息

Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.

National Clinical Research Center for Metabolic Diseases, Changsha, China.

出版信息

Ann Nutr Metab. 2021;77(1):38-45. doi: 10.1159/000513654. Epub 2021 Apr 13.

Abstract

BACKGROUND

Fatty liver disease (FLD) has become a rampant condition. It is associated with a high rate of morbidity and mortality in a population. The condition is commonly referred as FLD. Early prediction of FLD would allow patients to take necessary preventive, diagnosis, and treatment. The main objective of this research is to develop a machine learning (ML) model to predict FLD that can help medics to classify individuals at high risk of FLD, make novel diagnosis, management, and prevention for FLD.

METHODS

Total of 3,419 subjects were recruited with 845 having been screened for FLD. Classification models were used in the detection of the disease. These models include logistic regression (LR), random forest (RF), artificial neural networks (ANNs), k-nearest neighbors (KNNs), extreme gradient boosting (XGBoost), and linear discriminant analysis (LDA). Predictive accuracy was assessed by area under curve (AUC), sensitivity, specificity, positive predictive value, and negative predictive value.

RESULTS

We demonstrated that ML models give more accurate predictions, the best accuracy reached to 0.9415 in the XGBoost model. Feature importance analysis not only confirmed some well-known FLD risk factors, but also demonstrated several novel features for predicting the risk of FLD, such as hemoglobin.

CONCLUSION

By implementing the XGBoost model, physicians can efficiently identify FLD in general patients; this would help in prevention, early treatment, and management of FLD.

摘要

背景

脂肪肝疾病(FLD)已成为一种猖獗的疾病。它与人群中的高发病率和死亡率有关。这种情况通常被称为 FLD。FLD 的早期预测可以让患者采取必要的预防、诊断和治疗措施。本研究的主要目的是开发一种机器学习(ML)模型来预测 FLD,以帮助医务人员对高风险 FLD 个体进行分类,对 FLD 进行新的诊断、管理和预防。

方法

共招募了 3419 名受试者,其中 845 名受试者接受了 FLD 筛查。使用分类模型来检测疾病。这些模型包括逻辑回归(LR)、随机森林(RF)、人工神经网络(ANNs)、k-最近邻(KNNs)、极端梯度提升(XGBoost)和线性判别分析(LDA)。通过曲线下面积(AUC)、灵敏度、特异性、阳性预测值和阴性预测值评估预测准确性。

结果

我们证明了 ML 模型可以提供更准确的预测,在 XGBoost 模型中最佳准确性达到 0.9415。特征重要性分析不仅证实了一些众所周知的 FLD 风险因素,而且还证明了一些预测 FLD 风险的新特征,如血红蛋白。

结论

通过实施 XGBoost 模型,医生可以有效地识别普通患者中的 FLD;这将有助于预防、早期治疗和管理 FLD。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验