Suppr超能文献

通过MoO掺杂和钝化实现的高性能p-n结过渡金属二硫属化物光伏电池

High-Performance p-n Junction Transition Metal Dichalcogenide Photovoltaic Cells Enabled by MoO Doping and Passivation.

作者信息

Nassiri Nazif Koosha, Kumar Aravindh, Hong Jiho, Lee Nayeun, Islam Raisul, McClellan Connor J, Karni Ouri, van de Groep Jorik, Heinz Tony F, Pop Eric, Brongersma Mark L, Saraswat Krishna C

机构信息

Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States.

Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, United States.

出版信息

Nano Lett. 2021 Apr 28;21(8):3443-3450. doi: 10.1021/acs.nanolett.1c00015. Epub 2021 Apr 14.

Abstract

Layered semiconducting transition metal dichalcogenides (TMDs) are promising materials for high-specific-power photovoltaics due to their excellent optoelectronic properties. However, in practice, contacts to TMDs have poor charge carrier selectivity, while imperfect surfaces cause recombination, leading to a low open-circuit voltage () and therefore limited power conversion efficiency (PCE) in TMD photovoltaics. Here, we simultaneously address these fundamental issues with a simple MoO ( ≈ 3) surface charge-transfer doping and passivation method, applying it to multilayer tungsten disulfide (WS) Schottky-junction solar cells with initially near-zero . Doping and passivation turn these into lateral p-n junction photovoltaic cells with a record of 681 mV under AM 1.5G illumination, the highest among all p-n junction TMD solar cells with a practical design. The enhanced also leads to record PCE in ultrathin (<90 nm) WS photovoltaics. This easily scalable doping and passivation scheme is expected to enable further advances in TMD electronics and optoelectronics.

摘要

层状半导体过渡金属二硫属化物(TMDs)因其优异的光电特性,是用于高比功率光伏的很有前景的材料。然而,在实际应用中,与TMDs的接触具有较差的电荷载流子选择性,同时不完美的表面会导致复合,从而导致开路电压()较低,因此TMD光伏电池的功率转换效率(PCE)受限。在此,我们用一种简单的MoO(≈3)表面电荷转移掺杂和钝化方法同时解决这些基本问题,并将其应用于初始开路电压接近零的多层二硫化钨(WS)肖特基结太阳能电池。掺杂和钝化将这些电池转变为横向p-n结光伏电池,在AM 1.5G光照下开路电压达到创纪录的681 mV,在所有具有实际设计的p-n结TMD太阳能电池中是最高的。增强的开路电压也使超薄(<90 nm)WS光伏电池的PCE达到创纪录水平。这种易于扩展的掺杂和钝化方案有望推动TMD电子学和光电子学的进一步发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验