Nassiri Nazif Koosha, Kumar Aravindh, Hong Jiho, Lee Nayeun, Islam Raisul, McClellan Connor J, Karni Ouri, van de Groep Jorik, Heinz Tony F, Pop Eric, Brongersma Mark L, Saraswat Krishna C
Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States.
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, United States.
Nano Lett. 2021 Apr 28;21(8):3443-3450. doi: 10.1021/acs.nanolett.1c00015. Epub 2021 Apr 14.
Layered semiconducting transition metal dichalcogenides (TMDs) are promising materials for high-specific-power photovoltaics due to their excellent optoelectronic properties. However, in practice, contacts to TMDs have poor charge carrier selectivity, while imperfect surfaces cause recombination, leading to a low open-circuit voltage () and therefore limited power conversion efficiency (PCE) in TMD photovoltaics. Here, we simultaneously address these fundamental issues with a simple MoO ( ≈ 3) surface charge-transfer doping and passivation method, applying it to multilayer tungsten disulfide (WS) Schottky-junction solar cells with initially near-zero . Doping and passivation turn these into lateral p-n junction photovoltaic cells with a record of 681 mV under AM 1.5G illumination, the highest among all p-n junction TMD solar cells with a practical design. The enhanced also leads to record PCE in ultrathin (<90 nm) WS photovoltaics. This easily scalable doping and passivation scheme is expected to enable further advances in TMD electronics and optoelectronics.
层状半导体过渡金属二硫属化物(TMDs)因其优异的光电特性,是用于高比功率光伏的很有前景的材料。然而,在实际应用中,与TMDs的接触具有较差的电荷载流子选择性,同时不完美的表面会导致复合,从而导致开路电压()较低,因此TMD光伏电池的功率转换效率(PCE)受限。在此,我们用一种简单的MoO(≈3)表面电荷转移掺杂和钝化方法同时解决这些基本问题,并将其应用于初始开路电压接近零的多层二硫化钨(WS)肖特基结太阳能电池。掺杂和钝化将这些电池转变为横向p-n结光伏电池,在AM 1.5G光照下开路电压达到创纪录的681 mV,在所有具有实际设计的p-n结TMD太阳能电池中是最高的。增强的开路电压也使超薄(<90 nm)WS光伏电池的PCE达到创纪录水平。这种易于扩展的掺杂和钝化方案有望推动TMD电子学和光电子学的进一步发展。