Suppr超能文献

实施深度学习 CT 重建的协议优化考虑因素。

Protocol Optimization Considerations for Implementing Deep Learning CT Reconstruction.

机构信息

Department of Radiology, University of Wisconsin Madison, 1111 Highland Ave, 1005 WIMR, Madison, WI 53705.

Department of Medical Physics, University of Wisconsin Madison, Madison, Madison, WI.

出版信息

AJR Am J Roentgenol. 2021 Jun;216(6):1668-1677. doi: 10.2214/AJR.20.23397. Epub 2021 Apr 14.

Abstract

Previous advances over filtered back projection (FBP) have incorporated model-based iterative reconstruction. The purpose of this study was to characterize the latest advance in image reconstruction, that is, deep learning. The focus was on applying characterization results of a deep learning approach to decisions about clinical CT protocols. A proprietary deep learning image reconstruction (DLIR) method was characterized against an existing advanced adaptive statistical iterative reconstruction method (ASIR-V) and FBP from the same vendor. The metrics used were contrast-to-noise ratio, spatial resolution as a function of contrast level, noise texture (i.e., noise power spectra [NPS]), noise scaling as a function of slice thickness, and CT number consistency. The American College of Radiology accreditation phantom and a uniform water phantom were used at a range of doses and slice thicknesses for both axial and helical acquisition modes. ASIR-V and DLIR were associated with improved contrast-to-noise ratio over FBP for all doses and slice thicknesses. No dose or contrast dependencies of spatial resolution were observed for ASIR-V or DLIR. NPS results showed DLIR maintained an FBP-like noise texture whereas ASIR-V shifted the NPS to lower frequencies. Noise changed with dose and slice thickness in the same manner for ASIR-V and FBP. DLIR slice thickness noise scaling differed from FBP, exhibiting less noise penalty with decreasing slice thickness. No clinically significant changes were observed in CT numbers for any measurement condition. In a phantom model, DLIR does not suffer from the concerns over reduction in spatial resolution and introduction of poor noise texture associated with previous methods.

摘要

先前在滤波反投影(FBP)方面的进展已经结合了基于模型的迭代重建。本研究的目的是描述图像重建的最新进展,即深度学习。重点是将深度学习方法的特征描述结果应用于临床 CT 方案的决策。

对一种专有的深度学习图像重建(DLIR)方法进行了特征描述,该方法与同一供应商的现有高级自适应统计迭代重建方法(ASIR-V)和 FBP 进行了比较。使用的指标包括对比噪声比、对比度水平的空间分辨率、噪声纹理(即噪声功率谱 [NPS])、噪声随层厚的缩放以及 CT 值一致性。使用美国放射学院认证体模和均匀水模在轴向和螺旋采集模式下的一系列剂量和层厚进行了测量。

对于所有剂量和层厚,ASIR-V 和 DLIR 与 FBP 相比,对比度噪声比均有所提高。ASIR-V 或 DLIR 没有观察到空间分辨率随剂量或对比度的依赖关系。NPS 结果表明,DLIR 保持了类似于 FBP 的噪声纹理,而 ASIR-V 将 NPS 转移到了较低的频率。ASIR-V 和 FBP 的噪声随剂量和层厚的变化方式相同。DLIR 的层厚噪声缩放与 FBP 不同,随着层厚的减小,噪声惩罚较小。在任何测量条件下,CT 值均未观察到临床显著变化。

在体模模型中,DLIR 不会受到与先前方法相关的空间分辨率降低和引入不良噪声纹理的问题的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验