From the Departments of Radiology of Seoul National University Hospital, Seoul, South Korea (D.H.L., J.M.L.); Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, South Korea (D.H.L., J.M.L.); Korea University Guro Hospital, Korea University Medicine, Seoul, South Korea (C.H.L.); and Tübingen University Hospital, Tübingen, Germany (S.A., A.O.).
Radiol Artif Intell. 2024 Mar;6(2):e230192. doi: 10.1148/ryai.230192.
Purpose To compare the image quality and diagnostic capability in detecting malignant liver tumors of low-dose CT (LDCT, 33% dose) with deep learning-based denoising (DLD) and standard-dose CT (SDCT, 100% dose) with model-based iterative reconstruction (MBIR). Materials and Methods In this prospective, multicenter, noninferiority study, individuals referred for liver CT scans were enrolled from three tertiary referral hospitals between February 2021 and August 2022. All liver CT scans were conducted using a dual-source scanner with the dose split into tubes A (67% dose) and B (33% dose). Blended images from tubes A and B were created using MBIR to produce SDCT images, whereas LDCT images used data from tube B and were reconstructed with DLD. The noise in liver images was measured and compared between imaging techniques. The diagnostic performance of each technique in detecting malignant liver tumors was evaluated by three independent radiologists using jackknife alternative free-response receiver operating characteristic analysis. Noninferiority of LDCT compared with SDCT was declared when the lower limit of the 95% CI for the difference in figure of merit (FOM) was greater than -0.10. Results A total of 296 participants (196 men, 100 women; mean age, 60.5 years ± 13.3 [SD]) were included. The mean noise level in the liver was significantly lower for LDCT (10.1) compared with SDCT (10.7) ( < .001). Diagnostic performance was assessed in 246 participants (108 malignant tumors in 90 participants). The reader-averaged FOM was 0.880 for SDCT and 0.875 for LDCT ( = .35). The difference fell within the noninferiority margin (difference, -0.005 [95% CI: -0.024, 0.012]). Conclusion Compared with SDCT with MBIR, LDCT using 33% of the standard radiation dose had reduced image noise and comparable diagnostic performance in detecting malignant liver tumors. CT, Abdomen/GI, Liver, Comparative Studies, Diagnosis, Reconstruction Algorithms Clinical trial registration no. NCT05804799 © RSNA, 2024
目的 比较低剂量 CT(LDCT,33%剂量)与基于深度学习的去噪(DLD)和标准剂量 CT(SDCT,100%剂量)联合模型迭代重建(MBIR)检测恶性肝肿瘤的图像质量和诊断能力。
材料与方法 本前瞻性、多中心、非劣效性研究纳入了 2021 年 2 月至 2022 年 8 月期间来自三家三级转诊医院的接受肝脏 CT 扫描的患者。所有肝脏 CT 扫描均使用双源扫描仪进行,剂量分为管 A(67%剂量)和管 B(33%剂量)。使用 MBIR 对管 A 和管 B 的混合图像进行处理,生成 SDCT 图像,而 LDCT 图像则使用管 B 的数据进行重建,并使用 DLD 进行重建。测量并比较不同成像技术的肝脏图像噪声。由三位独立的放射科医生使用替代无反应性接收器操作特性分析评估每种技术检测恶性肝肿瘤的诊断性能。当差异的特征值(FOM)下限大于-0.10 时,宣布 LDCT 优于 SDCT。
结果 共纳入 296 名参与者(196 名男性,100 名女性;平均年龄,60.5 岁±13.3[标准差])。与 SDCT(10.7)相比,LDCT 的肝内噪声水平明显更低(10.1)(<0.001)。在 246 名参与者(90 名参与者中的 108 个恶性肿瘤)中评估了诊断性能。SDCT 的读者平均 FOM 为 0.880,LDCT 的 FOM 为 0.875(=0.35)。差异在非劣效性范围内(差异,-0.005[95%置信区间:-0.024,0.012])。
结论 与使用 MBIR 的 SDCT 相比,使用标准辐射剂量 33%的 LDCT 可降低图像噪声,并在检测恶性肝肿瘤方面具有相当的诊断性能。
CT,腹部/GI,肝脏,对比研究,诊断,重建算法
临床试验注册号 NCT05804799 © RSNA,2024