IEEE Trans Neural Syst Rehabil Eng. 2021;29:934-943. doi: 10.1109/TNSRE.2021.3073165. Epub 2021 May 25.
In recent years, multivariate synchronization index (MSI) algorithm, as a novel frequency detection method, has attracted increasing attentions in the study of brain-computer interfaces (BCIs) based on steady state visual evoked potential (SSVEP). However, MSI algorithm is hard to fully exploit SSVEP-related harmonic components in the electroencephalogram (EEG), which limits the application of MSI algorithm in BCI systems. In this paper, we propose a novel filter bank-driven MSI algorithm (FBMSI) to overcome the limitation and further improve the accuracy of SSVEP recognition. We evaluate the efficacy of the FBMSI method by developing a 6-command SSVEP-NAO robot system with extensive experimental analyses. An offline experimental study is first performed with EEG collected from nine subjects to investigate the effects of varying parameters on the model performance. Offline results show that the proposed method has achieved a stable improvement effect. We further conduct an online experiment with six subjects to assess the efficacy of the developed FBMSI algorithm in a real-time BCI application. The online experimental results show that the FBMSI algorithm yields a promising average accuracy of 83.56% using a data length of even only one second, which was 12.26% higher than the standard MSI algorithm. These extensive experimental results confirmed the effectiveness of the FBMSI algorithm in SSVEP recognition and demonstrated its potential application in the development of improved BCI systems.
近年来,多元同步指数(MSI)算法作为一种新的频率检测方法,在基于稳态视觉诱发电位(SSVEP)的脑-机接口(BCI)研究中受到越来越多的关注。然而,MSI 算法很难充分利用脑电图(EEG)中的 SSVEP 相关谐波分量,这限制了 MSI 算法在 BCI 系统中的应用。在本文中,我们提出了一种新的滤波器组驱动 MSI 算法(FBMSI),以克服这一限制,并进一步提高 SSVEP 识别的准确性。我们通过开发一个 6 命令 SSVEP-NAO 机器人系统,并进行广泛的实验分析,评估了 FBMSI 方法的效果。首先,我们进行了一项离线实验研究,使用来自 9 名受试者的 EEG 数据来研究不同参数对模型性能的影响。离线结果表明,该方法具有稳定的改进效果。我们进一步进行了一项在线实验,使用 6 名受试者来评估所开发的 FBMSI 算法在实时 BCI 应用中的效果。在线实验结果表明,FBMSI 算法在使用仅 1 秒的数据长度时,平均准确率达到了 83.56%,比标准 MSI 算法高出 12.26%。这些广泛的实验结果证实了 FBMSI 算法在 SSVEP 识别中的有效性,并展示了其在改进 BCI 系统开发中的潜在应用。