Suppr超能文献

激素敏感性和激素抵抗性前列腺癌细胞外泌体中磷脂代谢的变化。

Changes in phospholipid metabolism in exosomes of hormone-sensitive and hormone-resistant prostate cancer cells.

作者信息

Yi Xianlin, Li You, Hu XiaoGang, Wang FuBing, Liu Tiangang

机构信息

Department of Urology, The Affiliated Cancer Hospital of Guangxi Medical University & Guangxi Cancer Research Institute, Nanning 530021,China.

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China.

出版信息

J Cancer. 2021 Mar 15;12(10):2893-2902. doi: 10.7150/jca.48906. eCollection 2021.

Abstract

To explore the changes in lipids in exosomes of hormone-sensitive and hormone-resistant prostate cancer cells and develop an inexpensive and rapid technique for screening lipid-based biomarkers of prostate cancer. Exosomes were extracted from LnCap, PC and DU-145 cells, and their lipid composition was analyzed quantitatively using high-throughput mass spectrometry. Exosomes released by LnCap prostate cancer cells were also purified using a modified procedure based on polyethylene glycol (PEG) precipitation. Exosomes extracted from LnCap cells contained higher proportions of phosphatidyl choline, phosphatidyl ethanolamine and phosphatidyl inositol lipids than whole LnCap cells. Lysophosphatidylcholine, a harmful intermediate product of phosphatidylcholine metabolism , was not found in LnCap cells but in exosomes. Phospholipids were different in exosomes from LnCap, PC3 and DU-145 prostate cancer cells. The main lipid pathways involved, i.e., glycerophospholipid metabolism, autophagy, and ferroptosis pathways, were also different in these cells. Exosomes isolated by this modified PEG precipitation technique were similar in purity to those obtained using a commercial kit. This study demonstrates that phosphatidylcholine and its harmful product lysophosphatidylcholine may play important roles in hormone-sensitive prostate cancer. Phospholipid exosome metabolism was changed in hormone-sensitive and hormone-resistant prostate cancer cells. The LPC, lipid pathway of autophagy and ferroptosis may act as therapeutic targets. The possibility of purifying prostate cancer cell exosomes using modified PEG precipitation is suitable for cancer screening.

摘要

探索激素敏感性和激素抵抗性前列腺癌细胞外泌体中脂质的变化,并开发一种廉价且快速的技术来筛选前列腺癌基于脂质的生物标志物。从LnCap、PC和DU-145细胞中提取外泌体,并使用高通量质谱法定量分析其脂质组成。还使用基于聚乙二醇(PEG)沉淀的改良方法纯化LnCap前列腺癌细胞释放的外泌体。从LnCap细胞中提取的外泌体中磷脂酰胆碱、磷脂酰乙醇胺和磷脂酰肌醇脂质的比例高于整个LnCap细胞。溶血磷脂酰胆碱是磷脂酰胆碱代谢的有害中间产物,在LnCap细胞中未发现,但在外泌体中存在。LnCap、PC3和DU-145前列腺癌细胞的外泌体中的磷脂不同。这些细胞中涉及的主要脂质途径,即甘油磷脂代谢、自噬和铁死亡途径也不同。通过这种改良的PEG沉淀技术分离的外泌体在纯度上与使用商业试剂盒获得的外泌体相似。这项研究表明,磷脂酰胆碱及其有害产物溶血磷脂酰胆碱可能在激素敏感性前列腺癌中起重要作用。激素敏感性和激素抵抗性前列腺癌细胞中的磷脂外泌体代谢发生了变化。自噬和铁死亡的LPC脂质途径可能作为治疗靶点。使用改良的PEG沉淀法纯化前列腺癌细胞外泌体的可能性适用于癌症筛查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/762a/8040901/bff4db0dd61e/jcav12p2893g001.jpg

相似文献

1
Changes in phospholipid metabolism in exosomes of hormone-sensitive and hormone-resistant prostate cancer cells.
J Cancer. 2021 Mar 15;12(10):2893-2902. doi: 10.7150/jca.48906. eCollection 2021.
2
Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers.
Eur J Cancer. 2017 Jan;70:122-132. doi: 10.1016/j.ejca.2016.10.011. Epub 2016 Nov 30.
3
Exosome carrying PSGR promotes stemness and epithelial-mesenchymal transition of low aggressive prostate cancer cells.
Life Sci. 2021 Jan 1;264:118638. doi: 10.1016/j.lfs.2020.118638. Epub 2020 Oct 24.
4
Isolation of prostate cancer-related exosomes.
Anticancer Res. 2014 Jul;34(7):3419-23.
5
Prostate carcinoma cell-derived exosomal MicroRNA-26a modulates the metastasis and tumor growth of prostate carcinoma.
Biomed Pharmacother. 2019 Sep;117:109109. doi: 10.1016/j.biopha.2019.109109. Epub 2019 Jun 20.
6
Molecular lipidomics of exosomes released by PC-3 prostate cancer cells.
Biochim Biophys Acta. 2013 Jul;1831(7):1302-9. doi: 10.1016/j.bbalip.2013.04.011.
7
Database-augmented Mass Spectrometry Analysis of Exosomes Identifies Claudin 3 as a Putative Prostate Cancer Biomarker.
Mol Cell Proteomics. 2017 Jun;16(6):998-1008. doi: 10.1074/mcp.M117.068577. Epub 2017 Apr 9.
9
Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology.
J Lipid Res. 2019 Jan;60(1):9-18. doi: 10.1194/jlr.R084343. Epub 2018 Aug 3.
10
Exosomes from LNCaP cells promote osteoblast activity through miR-375 transfer.
Oncol Lett. 2019 May;17(5):4463-4473. doi: 10.3892/ol.2019.10110. Epub 2019 Mar 5.

引用本文的文献

1
Role of exosomes in castration-resistant prostate cancer.
Front Oncol. 2025 May 14;15:1498733. doi: 10.3389/fonc.2025.1498733. eCollection 2025.
2
Cancer Cell Line Classification Using Raman Spectroscopy of Cancer-Derived Exosomes and Machine Learning.
Anal Chem. 2025 Apr 8;97(13):7289-7298. doi: 10.1021/acs.analchem.4c06966. Epub 2025 Mar 27.
3
Exosome isolation based on polyethylene glycol (PEG): a review.
Mol Cell Biochem. 2025 May;480(5):2847-2861. doi: 10.1007/s11010-024-05191-x. Epub 2024 Dec 19.
4
Liquid biopsy of extracellular vesicle biomarkers for prostate cancer personalized treatment decision.
Extracell Vesicles Circ Nucl Acids. 2022 Jan 13;3(1):3-9. doi: 10.20517/evcna.2021.20. eCollection 2022.
5
Emerging roles of small extracellular vesicles in metabolic reprogramming and drug resistance in cancers.
Cancer Drug Resist. 2024 Sep 27;7:38. doi: 10.20517/cdr.2024.81. eCollection 2024.
6
Ferroptosis and the ubiquitin-proteasome system: exploring treatment targets in cancer.
Front Pharmacol. 2024 Apr 11;15:1383203. doi: 10.3389/fphar.2024.1383203. eCollection 2024.
7
Ferroptosis: Emerging mechanisms, biological function, and therapeutic potential in cancer and inflammation.
Cell Death Discov. 2024 Jan 24;10(1):45. doi: 10.1038/s41420-024-01825-7.
9
Exosome Release Delays Senescence by Disposing of Obsolete Biomolecules.
Adv Sci (Weinh). 2023 Mar;10(8):e2204826. doi: 10.1002/advs.202204826. Epub 2023 Jan 22.

本文引用的文献

1
Iron Induces Cell Death and Strengthens the Efficacy of Antiandrogen Therapy in Prostate Cancer Models.
Clin Cancer Res. 2020 Dec 1;26(23):6387-6398. doi: 10.1158/1078-0432.CCR-20-3182. Epub 2020 Sep 14.
2
Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention.
Adv Drug Deliv Rev. 2020;159:245-293. doi: 10.1016/j.addr.2020.07.013. Epub 2020 Jul 23.
4
Extraction and identification of synovial tissue-derived exosomes by different separation techniques.
J Orthop Surg Res. 2020 Mar 9;15(1):97. doi: 10.1186/s13018-020-01604-x.
5
The mechanisms of lysophosphatidylcholine in the development of diseases.
Life Sci. 2020 Apr 15;247:117443. doi: 10.1016/j.lfs.2020.117443. Epub 2020 Feb 19.
6
Lipid Metabolism and Endocrine Resistance in Prostate Cancer, and New Opportunities for Therapy.
Int J Mol Sci. 2019 May 28;20(11):2626. doi: 10.3390/ijms20112626.
8
Preoperative Metabolic Signatures of Prostate Cancer Recurrence Following Radical Prostatectomy.
J Proteome Res. 2019 Mar 1;18(3):1316-1327. doi: 10.1021/acs.jproteome.8b00926. Epub 2019 Feb 20.
9
Autophagic cell death restricts chromosomal instability during replicative crisis.
Nature. 2019 Jan;565(7741):659-663. doi: 10.1038/s41586-019-0885-0. Epub 2019 Jan 23.
10
Lipid profiles of prostate cancer cells.
Oncotarget. 2018 Oct 30;9(85):35541-35552. doi: 10.18632/oncotarget.26222.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验