Suppr超能文献

机器学习诊断小儿阻塞性睡眠呼吸暂停的可靠性:系统评价和荟萃分析。

Reliability of machine learning to diagnose pediatric obstructive sleep apnea: Systematic review and meta-analysis.

机构信息

Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain.

Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Zaragoza, Spain.

出版信息

Pediatr Pulmonol. 2022 Aug;57(8):1931-1943. doi: 10.1002/ppul.25423. Epub 2021 Apr 30.

Abstract

BACKGROUND

Machine-learning approaches have enabled promising results in efforts to simplify the diagnosis of pediatric obstructive sleep apnea (OSA). A comprehensive review and analysis of such studies increase the confidence level of practitioners and healthcare providers in the implementation of these methodologies in clinical practice.

OBJECTIVE

To assess the reliability of machine-learning-based methods to detect pediatric OSA.

DATA SOURCES

Two researchers conducted an electronic search on the Web of Science and Scopus using term, and studies were reviewed along with their bibliographic references.

ELIGIBILITY CRITERIA

Articles or reviews (Year 2000 onwards) that applied machine learning to detect pediatric OSA; reported data included information enabling derivation of true positive, false negative, true negative, and false positive cases; polysomnography served as diagnostic standard.

APPRAISAL AND SYNTHESIS METHODS

Pooled sensitivities and specificities were computed for three apnea-hypopnea index (AHI) thresholds: 1 event/hour (e/h), 5 e/h, and 10 e/h. Random-effect models were assumed. Summary receiver-operating characteristics (SROC) analyses were also conducted. Heterogeneity (I ) was evaluated, and publication bias was corrected (trim and fill).

RESULTS

Nineteen studies were finally retained, involving 4767 different pediatric sleep studies. Machine learning improved diagnostic performance as OSA severity criteria increased reaching optimal values for AHI = 10 e/h (0.652 sensitivity; 0.931 specificity; and 0.940 area under the SROC curve). Publication bias correction had minor effect on summary statistics, but high heterogeneity was observed among the studies.

摘要

背景

机器学习方法在简化小儿阻塞性睡眠呼吸暂停(OSA)的诊断方面取得了有希望的结果。对这些研究进行全面的回顾和分析,可以提高从业者和医疗保健提供者在临床实践中实施这些方法的信心水平。

目的

评估基于机器学习的方法检测小儿 OSA 的可靠性。

资料来源

两名研究人员在 Web of Science 和 Scopus 上使用术语进行了电子搜索,并对研究及其参考文献进行了综述。

入选标准

应用机器学习来检测小儿 OSA 的文章或综述(2000 年以后发表);报告的数据包括能够得出真阳性、假阴性、真阴性和假阳性病例的信息;多导睡眠图作为诊断标准。

评估和综合方法

计算了三个呼吸暂停低通气指数(AHI)阈值(1 次/小时、5 次/小时和 10 次/小时)的合并敏感性和特异性。采用随机效应模型。还进行了综合接收者操作特征(SROC)分析。评估了异质性(I ),并进行了发表偏倚校正(修剪和填充)。

结果

最终保留了 19 项研究,涉及 4767 项不同的儿科睡眠研究。随着 OSA 严重程度标准的增加,机器学习提高了诊断性能,达到了 AHI=10 e/h 的最佳值(敏感性为 0.652,特异性为 0.931,SROC 曲线下面积为 0.940)。发表偏倚校正对汇总统计数据的影响较小,但研究之间存在高度异质性。

相似文献

1
Reliability of machine learning to diagnose pediatric obstructive sleep apnea: Systematic review and meta-analysis.
Pediatr Pulmonol. 2022 Aug;57(8):1931-1943. doi: 10.1002/ppul.25423. Epub 2021 Apr 30.
2
Polysomnography in patients with obstructive sleep apnea: an evidence-based analysis.
Ont Health Technol Assess Ser. 2006;6(13):1-38. Epub 2006 Jun 1.
3
Can portable sleep monitors replace polysomnography for diagnosis of pediatric OSA: a systematic review and meta-analysis.
Eur Arch Otorhinolaryngol. 2023 Oct;280(10):4351-4359. doi: 10.1007/s00405-023-08095-6. Epub 2023 Jul 5.
6
Enabling Early Obstructive Sleep Apnea Diagnosis With Machine Learning: Systematic Review.
J Med Internet Res. 2022 Sep 30;24(9):e39452. doi: 10.2196/39452.
7
Assessment of Mandibular Movement Monitoring With Machine Learning Analysis for the Diagnosis of Obstructive Sleep Apnea.
JAMA Netw Open. 2020 Jan 3;3(1):e1919657. doi: 10.1001/jamanetworkopen.2019.19657.
8
Improved diagnostic accuracy for pediatric obstructive sleep apnea using an out-of-center sleep test.
Auris Nasus Larynx. 2022 Dec;49(6):980-985. doi: 10.1016/j.anl.2022.03.001. Epub 2022 Mar 28.

引用本文的文献

1
Diagnostic accuracy of artificial intelligence for obstructive sleep apnea detection: a systematic review.
BMC Med Inform Decis Mak. 2025 Jul 28;25(1):278. doi: 10.1186/s12911-025-03129-x.
2
SLA-MLP: Enhancing Sleep Stage Analysis from EEG Signals Using Multilayer Perceptron Networks.
Diagnostics (Basel). 2024 Nov 25;14(23):2657. doi: 10.3390/diagnostics14232657.
3
Deep learning approaches for assessing pediatric sleep apnea severity through SpO2 signals.
Sci Rep. 2024 Oct 1;14(1):22696. doi: 10.1038/s41598-024-67729-9.
4
Development and application of a machine learning-based predictive model for obstructive sleep apnea screening.
Front Big Data. 2024 May 16;7:1353469. doi: 10.3389/fdata.2024.1353469. eCollection 2024.
5
Pediatric obstructive sleep apnea diagnosis: leveraging machine learning with linear discriminant analysis.
Front Pediatr. 2024 Feb 14;12:1328209. doi: 10.3389/fped.2024.1328209. eCollection 2024.
6
Development and Validation of a Nomogram for Predicting Obstructive Sleep Apnea Severity in Children.
Nat Sci Sleep. 2024 Feb 22;16:193-206. doi: 10.2147/NSS.S445469. eCollection 2024.
7
ECG-based convolutional neural network in pediatric obstructive sleep apnea diagnosis.
Comput Biol Med. 2023 Dec;167:107628. doi: 10.1016/j.compbiomed.2023.107628. Epub 2023 Oct 24.
9
Novel Indices to Improve the Diagnostic Ability of Nocturnal Oximetry in Children with OSAS.
Children (Basel). 2023 Feb 25;10(3):453. doi: 10.3390/children10030453.
10
Paediatric sleep apnea event prediction using nasal air pressure and machine learning.
J Sleep Res. 2023 Aug;32(4):e13851. doi: 10.1111/jsr.13851. Epub 2023 Feb 20.

本文引用的文献

1
Phenotypic variance in pediatric obstructive sleep apnea.
Pediatr Pulmonol. 2021 Jun;56(6):1754-1762. doi: 10.1002/ppul.25309. Epub 2021 Feb 16.
2
A Convolutional Neural Network Architecture to Enhance Oximetry Ability to Diagnose Pediatric Obstructive Sleep Apnea.
IEEE J Biomed Health Inform. 2021 Aug;25(8):2906-2916. doi: 10.1109/JBHI.2020.3048901. Epub 2021 Aug 5.
5
Predicting polysomnographic severity thresholds in children using machine learning.
Pediatr Res. 2020 Sep;88(3):404-411. doi: 10.1038/s41390-020-0944-0. Epub 2020 May 9.
6
Treatment of Obstructive Sleep Apnea in Children: Handling the Unknown with Precision.
J Clin Med. 2020 Mar 24;9(3):888. doi: 10.3390/jcm9030888.
7
Usefulness of recurrence plots from airflow recordings to aid in paediatric sleep apnoea diagnosis.
Comput Methods Programs Biomed. 2020 Jan;183:105083. doi: 10.1016/j.cmpb.2019.105083. Epub 2019 Sep 18.
9
Towards Patient-centered Diagnosis of Pediatric Obstructive Sleep Apnea-A Review of Biomedical Engineering Strategies.
Expert Rev Med Devices. 2019 Jul;16(7):617-629. doi: 10.1080/17434440.2019.1626233. Epub 2019 Jun 8.
10
Diagnostic test accuracy: application and practice using R software.
Epidemiol Health. 2019;41:e2019007. doi: 10.4178/epih.e2019007. Epub 2019 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验