Suppr超能文献

高效的 CRISPR-Cas9 介导的原发性人 B 细胞基因敲除用于 Epstein-Barr 病毒感染的功能遗传研究。

Highly efficient CRISPR-Cas9-mediated gene knockout in primary human B cells for functional genetic studies of Epstein-Barr virus infection.

机构信息

Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany.

German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany.

出版信息

PLoS Pathog. 2021 Apr 15;17(4):e1009117. doi: 10.1371/journal.ppat.1009117. eCollection 2021 Apr.

Abstract

Gene editing is now routine in all prokaryotic and metazoan cells but has not received much attention in immune cells when the CRISPR-Cas9 technology was introduced in the field of mammalian cell biology less than ten years ago. This versatile technology has been successfully adapted for gene modifications in human myeloid cells and T cells, among others, but applications to human primary B cells have been scarce and limited to activated B cells. This limitation has precluded conclusive studies into cell activation, differentiation or cell cycle control in this cell type. We report on highly efficient, simple and rapid genome engineering in primary resting human B cells using nucleofection of Cas9 ribonucleoprotein complexes, followed by EBV infection or culture on CD40 ligand feeder cells to drive in vitro B cell survival. We provide proof-of-principle of gene editing in quiescent human B cells using two model genes: CD46 and CDKN2A. The latter encodes the cell cycle regulator p16INK4a which is an important target of Epstein-Barr virus (EBV). Infection of B cells carrying a knockout of CDKN2A with wildtype and EBNA3 oncoprotein mutant strains of EBV allowed us to conclude that EBNA3C controls CDKN2A, the only barrier to B cell proliferation in EBV infected cells. Together, this approach enables efficient targeting of specific gene loci in quiescent human B cells supporting basic research as well as immunotherapeutic strategies.

摘要

基因编辑现在在所有原核生物和后生动物细胞中都很常见,但在不到十年前 CRISPR-Cas9 技术被引入哺乳动物细胞生物学领域时,免疫细胞中并没有受到太多关注。这项多功能技术已成功应用于人类髓系细胞和 T 细胞等基因修饰,但在人类原代 B 细胞中的应用却很少,仅限于激活的 B 细胞。这种局限性排除了在这种细胞类型中对细胞激活、分化或细胞周期控制进行结论性研究的可能性。我们报告了使用 Cas9 核糖核蛋白复合物的核转染,在原代静止的人类 B 细胞中进行高效、简单和快速的基因组工程,然后进行 EBV 感染或在 CD40 配体饲养细胞上培养,以促进体外 B 细胞存活。我们使用两个模型基因 CD46 和 CDKN2A 提供了在静止人类 B 细胞中进行基因编辑的原理验证。后者编码细胞周期调节剂 p16INK4a,是 Epstein-Barr 病毒 (EBV) 的重要靶标。携带 CDKN2A 基因敲除的 B 细胞感染野生型和 EBNA3 致癌蛋白突变株 EBV 后,我们得出结论,EBNA3C 控制 CDKN2A,这是 EBV 感染细胞中 B 细胞增殖的唯一障碍。总之,这种方法能够有效地靶向静止人类 B 细胞中的特定基因座,支持基础研究和免疫治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/634e/8078793/d8769d91dcac/ppat.1009117.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验