Suppr超能文献

深度学习方法估计应力分布:有限元分析的快速准确替代方法。

A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis.

机构信息

Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Technology Enterprise Park, Room 206, 387 Technology Circle, Atlanta, GA 30313-2412, USA.

Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Technology Enterprise Park, Room 206, 387 Technology Circle, Atlanta, GA 30313-2412, USA

出版信息

J R Soc Interface. 2018 Jan;15(138). doi: 10.1098/rsif.2017.0844.

Abstract

Structural finite-element analysis (FEA) has been widely used to study the biomechanics of human tissues and organs, as well as tissue-medical device interactions, and treatment strategies. However, patient-specific FEA models usually require complex procedures to set up and long computing times to obtain final simulation results, preventing prompt feedback to clinicians in time-sensitive clinical applications. In this study, by using machine learning techniques, we developed a deep learning (DL) model to directly estimate the stress distributions of the aorta. The DL model was designed and trained to take the input of FEA and directly output the aortic wall stress distributions, bypassing the FEA calculation process. The trained DL model is capable of predicting the stress distributions with average errors of 0.492% and 0.891% in the Von Mises stress distribution and peak Von Mises stress, respectively. This study marks, to our knowledge, the first study that demonstrates the feasibility and great potential of using the DL technique as a fast and accurate surrogate of FEA for stress analysis.

摘要

结构有限元分析(FEA)已广泛应用于研究人体组织和器官的生物力学,以及组织-医疗设备相互作用和治疗策略。然而,针对特定患者的 FEA 模型通常需要复杂的设置过程和较长的计算时间才能获得最终的模拟结果,这使得在时间敏感的临床应用中无法及时向临床医生提供反馈。在这项研究中,我们通过使用机器学习技术,开发了一种深度学习(DL)模型,可直接估计主动脉的应力分布。该 DL 模型的设计和训练旨在接收 FEA 的输入,并直接输出主动脉壁的应力分布,从而绕过 FEA 计算过程。经训练的 DL 模型能够预测 Von Mises 应力分布和 Von Mises 峰值应力的平均误差分别为 0.492%和 0.891%。据我们所知,这项研究首次证明了使用 DL 技术作为 FEA 的快速准确替代方法进行应力分析的可行性和巨大潜力。

相似文献

引用本文的文献

本文引用的文献

1
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
10
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验