文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

单细胞调控图谱揭示了小鼠肾脏的细胞分化程序和疾病靶点。

Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets.

机构信息

Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.

Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.

出版信息

Nat Commun. 2021 Apr 15;12(1):2277. doi: 10.1038/s41467-021-22266-1.


DOI:10.1038/s41467-021-22266-1
PMID:33859189
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8050063/
Abstract

Determining the epigenetic program that generates unique cell types in the kidney is critical for understanding cell-type heterogeneity during tissue homeostasis and injury response. Here, we profile open chromatin and gene expression in developing and adult mouse kidneys at single cell resolution. We show critical reliance of gene expression on distal regulatory elements (enhancers). We reveal key cell type-specific transcription factors and major gene-regulatory circuits for kidney cells. Dynamic chromatin and expression changes during nephron progenitor differentiation demonstrates that podocyte commitment occurs early and is associated with sustained Foxl1 expression. Renal tubule cells follow a more complex differentiation, where Hfn4a is associated with proximal and Tfap2b with distal fate. Mapping single nucleotide variants associated with human kidney disease implicates critical cell types, developmental stages, genes, and regulatory mechanisms. The single cell multi-omics atlas reveals key chromatin remodeling events and gene expression dynamics associated with kidney development.

摘要

确定在肾脏中产生独特细胞类型的表观遗传程序对于理解组织稳态和损伤反应期间的细胞类型异质性至关重要。在这里,我们以单细胞分辨率对发育中和成年小鼠肾脏中的开放染色质和基因表达进行了分析。我们表明基因表达对远端调控元件(增强子)有重要的依赖性。我们揭示了肾脏细胞的关键细胞类型特异性转录因子和主要基因调控回路。肾祖细胞分化过程中的动态染色质和表达变化表明,足细胞的特化发生得很早,并与持续的 Foxl1 表达相关。肾小管细胞遵循更为复杂的分化途径,其中 Hfn4a 与近端相关,而 Tfap2b 与远端相关。与人类肾脏疾病相关的单核苷酸变异的映射涉及关键的细胞类型、发育阶段、基因和调控机制。单细胞多组学图谱揭示了与肾脏发育相关的关键染色质重塑事件和基因表达动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d42f/8050063/99cfc10cc6bb/41467_2021_22266_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d42f/8050063/890946860b6d/41467_2021_22266_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d42f/8050063/da0e34065305/41467_2021_22266_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d42f/8050063/599685a8e2c2/41467_2021_22266_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d42f/8050063/38f404a985c6/41467_2021_22266_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d42f/8050063/eebe5c5925f8/41467_2021_22266_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d42f/8050063/99cfc10cc6bb/41467_2021_22266_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d42f/8050063/890946860b6d/41467_2021_22266_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d42f/8050063/da0e34065305/41467_2021_22266_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d42f/8050063/599685a8e2c2/41467_2021_22266_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d42f/8050063/38f404a985c6/41467_2021_22266_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d42f/8050063/eebe5c5925f8/41467_2021_22266_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d42f/8050063/99cfc10cc6bb/41467_2021_22266_Fig6_HTML.jpg

相似文献

[1]
Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets.

Nat Commun. 2021-4-15

[2]
Epigenetic regulation of renal development.

Semin Cell Dev Biol. 2018-9-5

[3]
Transcriptional regulatory control of mammalian nephron progenitors revealed by multi-factor cistromic analysis and genetic studies.

PLoS Genet. 2018-1-29

[4]
Single-Cell Chromatin and Gene-Regulatory Dynamics of Mouse Nephron Progenitors.

J Am Soc Nephrol. 2022-7

[5]
Chromatin Remodelers Interact with Eya1 and Six2 to Target Enhancers to Control Nephron Progenitor Cell Maintenance.

J Am Soc Nephrol. 2021-11

[6]
PI3K signaling specifies proximal-distal fate by driving a developmental gene regulatory network in SOX9+ mouse lung progenitors.

Elife. 2022-8-17

[7]
Single-cell multiomics reveals ENL mutation perturbs kidney developmental trajectory by rewiring gene regulatory landscape.

Nat Commun. 2024-7-15

[8]
Tfap2a is a novel gatekeeper of nephron differentiation during kidney development.

Development. 2019-7-10

[9]
A coordinated progression of progenitor cell states initiates urinary tract development.

Nat Commun. 2021-5-11

[10]
Nephron progenitor cell commitment: Striking the right balance.

Semin Cell Dev Biol. 2018-7-30

引用本文的文献

[1]
Cell type heterogeneity in gene co-expression networks: implications for toxicological research.

Brief Bioinform. 2025-7-2

[2]
Axial nephron fate switching demonstrates a plastic system tunable on demand.

Nat Commun. 2025-8-25

[3]
Integrative proteogenomic characterization of Wilms tumor.

Nat Commun. 2025-8-19

[4]
Human fetal kidney organoids model early human nephrogenesis and Notch-driven cell fate.

EMBO J. 2025-7-21

[5]
Single-cell spatial transcriptomics reveals pathogenic mechanism of renal fibrosis in imiquimod-induced lupus nephritis in mice.

Biochem Biophys Rep. 2025-6-23

[6]
Age-dependent accumulation of mitochondrial tRNA mutations in mouse kidneys linked to mitochondrial kidney diseases.

Nat Aging. 2025-6-27

[7]
Progress and applications of single-cell RNA sequencing and spatial transcriptome technology in acute kidney injury research.

Mol Ther Nucleic Acids. 2025-5-30

[8]
The spatial and temporal activation of macrophages during fibrosis.

Nat Rev Immunol. 2025-6-4

[9]
Single-cell epigenetics and multiomics analysis in kidney research.

Clin Exp Nephrol. 2025-4-25

[10]
Multi-omic and spatial analysis of mouse kidneys highlights sex-specific differences in gene regulation across the lifespan.

Nat Genet. 2025-5

本文引用的文献

[1]
Single-cell chromatin accessibility identifies pancreatic islet cell type- and state-specific regulatory programs of diabetes risk.

Nat Genet. 2021-4

[2]
How to Get Started with Single Cell RNA Sequencing Data Analysis.

J Am Soc Nephrol. 2021-6-1

[3]
SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data.

Gigascience. 2020-12-26

[4]
The Nuclear Receptor ESRRA Protects from Kidney Disease by Coupling Metabolism and Differentiation.

Cell Metab. 2021-2-2

[5]
Identification and characterization of cellular heterogeneity within the developing renal interstitium.

Development. 2020-8-14

[6]
Developmental trajectory of prehematopoietic stem cell formation from endothelium.

Blood. 2020-8-13

[7]
Single-cell chromatin accessibility maps reveal regulatory programs driving early mouse organogenesis.

Nat Cell Biol. 2020-3-30

[8]
and -Decommissioned Fetal Enhancers are Linked to Kidney Disease.

J Am Soc Nephrol. 2020-3-3

[9]
Fast, sensitive and accurate integration of single-cell data with Harmony.

Nat Methods. 2019-11-18

[10]
Assessment of computational methods for the analysis of single-cell ATAC-seq data.

Genome Biol. 2019-11-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索