Department of Computational Neuroscience, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246 Hamburg, Germany.
Department of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246 Hamburg, Germany.
Sci Rep. 2021 Apr 15;11(1):8233. doi: 10.1038/s41598-021-87607-y.
Advances in high-resolution live-cell [Formula: see text] imaging enabled subcellular localization of early [Formula: see text] signaling events in T-cells and paved the way to investigate the interplay between receptors and potential target channels in [Formula: see text] release events. The huge amount of acquired data requires efficient, ideally automated image processing pipelines, with cell localization/segmentation as central tasks. Automated segmentation in live-cell cytosolic [Formula: see text] imaging data is, however, challenging due to temporal image intensity fluctuations, low signal-to-noise ratio, and photo-bleaching. Here, we propose a reservoir computing (RC) framework for efficient and temporally consistent segmentation. Experiments were conducted with Jurkat T-cells and anti-CD3 coated beads used for T-cell activation. We compared the RC performance with a standard U-Net and a convolutional long short-term memory (LSTM) model. The RC-based models (1) perform on par in terms of segmentation accuracy with the deep learning models for cell-only segmentation, but show improved temporal segmentation consistency compared to the U-Net; (2) outperform the U-Net for two-emission wavelengths image segmentation and differentiation of T-cells and beads; and (3) perform on par with the convolutional LSTM for single-emission wavelength T-cell/bead segmentation and differentiation. In turn, RC models contain only a fraction of the parameters of the baseline models and reduce the training time considerably.
高通量活细胞 [Formula: see text] 成像技术的进步使 T 细胞中早期 [Formula: see text] 信号事件的亚细胞定位成为可能,并为研究受体与潜在靶通道在 [Formula: see text] 释放事件中的相互作用铺平了道路。所获得的大量数据需要高效的、理想情况下是自动化的图像处理流水线,而细胞定位/分割是核心任务。然而,由于时间上的图像强度波动、低信噪比和光漂白,活细胞胞质 [Formula: see text] 成像数据的自动分割具有挑战性。在这里,我们提出了一种用于高效和时间一致分割的储层计算 (RC) 框架。使用 Jurkat T 细胞和用于 T 细胞激活的抗 CD3 包被珠进行了实验。我们将 RC 性能与标准 U-Net 和卷积长短期记忆 (LSTM) 模型进行了比较。基于 RC 的模型 (1) 在细胞单独分割方面的分割准确性与深度学习模型相当,但与 U-Net 相比,表现出更好的时间分割一致性;(2) 在两个发射波长的图像分割以及 T 细胞和珠的区分方面优于 U-Net;(3) 在单发射波长 T 细胞/珠的分割和区分方面与卷积 LSTM 相当。反过来,RC 模型只包含基线模型参数的一小部分,并大大减少了训练时间。