Department of Information Technology, North Eastern Hill University, Shillong, Meghalaya, 793022, India.
Department of Electronics and Communication Engineering, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majitar, Sikkim, 737136, India.
J Digit Imaging. 2022 Aug;35(4):893-909. doi: 10.1007/s10278-022-00613-y. Epub 2022 Mar 18.
Hippocampus is a part of the limbic system in human brain that plays an important role in forming memories and dealing with intellectual abilities. In most of the neurological disorders related to dementia, such as, Alzheimer's disease, hippocampus is one of the earliest affected regions. Because there are no effective dementia drugs, an ambient assisted living approach may help to prevent or slow the progression of dementia. By segmenting and analyzing the size/shape of hippocampus, it may be possible to classify the early dementia stages. Because of complex structure, traditional image segmentation techniques can't segment hippocampus accurately. Machine learning (ML) is a well known tool in medical image processing that can predict and deliver the outcomes accurately by learning from it's previous results. Convolutional Neural Networks (CNN) is one of the most popular ML algorithms. In this work, a U-Net Convolutional Network based approach is used for hippocampus segmentation from 2D brain images. It is observed that, the original U-Net architecture can segment hippocampus with an average performance rate of 93.6%, which outperforms all other discussed state-of-arts. By using a filter size of [Formula: see text], the original U-Net architecture performs a sequence of convolutional processes. We tweaked the architecture further to extract more relevant features by replacing all [Formula: see text] kernels with three alternative kernels of sizes [Formula: see text], [Formula: see text], and [Formula: see text]. It is observed that, the modified architecture achieved an average performance rate of 96.5%, which outperforms the original U-Net model convincingly.
海马体是人类大脑边缘系统的一部分,在形成记忆和处理智力能力方面起着重要作用。在大多数与痴呆症相关的神经紊乱中,如阿尔茨海默病,海马体是最早受影响的区域之一。由于没有有效的痴呆症药物,环境辅助生活方法可能有助于预防或减缓痴呆症的进展。通过对海马体的大小/形状进行分割和分析,可能可以对早期痴呆症阶段进行分类。由于结构复杂,传统的图像分割技术无法准确分割海马体。机器学习 (ML) 是医学图像处理中众所周知的工具,它可以通过从以前的结果中学习来准确地预测和提供结果。卷积神经网络 (CNN) 是最流行的 ML 算法之一。在这项工作中,使用基于 U-Net 卷积网络的方法从 2D 脑图像中分割海马体。结果表明,原始的 U-Net 架构可以以平均 93.6%的性能率分割海马体,优于所有其他讨论的最先进技术。通过使用[公式:见文本]大小的滤波器,原始的 U-Net 架构执行一系列卷积过程。我们进一步调整架构,通过用大小为[公式:见文本]、[公式:见文本]和[公式:见文本]的三个替代内核替换所有[公式:见文本]内核,来提取更多相关特征。结果表明,修改后的架构的平均性能率达到 96.5%,明显优于原始的 U-Net 模型。