Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
ICube, UMR 7357, CNRS-Université de Strasbourg, Strasbourg, France.
Int J Comput Assist Radiol Surg. 2021 Jun;16(6):915-922. doi: 10.1007/s11548-021-02376-3. Epub 2021 Apr 28.
Ureteroscopy is an efficient endoscopic minimally invasive technique for the diagnosis and treatment of upper tract urothelial carcinoma. During ureteroscopy, the automatic segmentation of the hollow lumen is of primary importance, since it indicates the path that the endoscope should follow. In order to obtain an accurate segmentation of the hollow lumen, this paper presents an automatic method based on convolutional neural networks (CNNs).
The proposed method is based on an ensemble of 4 parallel CNNs to simultaneously process single and multi-frame information. Of these, two architectures are taken as core-models, namely U-Net based in residual blocks ([Formula: see text]) and Mask-RCNN ([Formula: see text]), which are fed with single still-frames I(t). The other two models ([Formula: see text], [Formula: see text]) are modifications of the former ones consisting on the addition of a stage which makes use of 3D convolutions to process temporal information. [Formula: see text], [Formula: see text] are fed with triplets of frames ([Formula: see text], I(t), [Formula: see text]) to produce the segmentation for I(t).
The proposed method was evaluated using a custom dataset of 11 videos (2673 frames) which were collected and manually annotated from 6 patients. We obtain a Dice similarity coefficient of 0.80, outperforming previous state-of-the-art methods.
The obtained results show that spatial-temporal information can be effectively exploited by the ensemble model to improve hollow lumen segmentation in ureteroscopic images. The method is effective also in the presence of poor visibility, occasional bleeding, or specular reflections.
输尿管镜检查术是一种用于诊断和治疗上尿路尿路上皮癌的有效内镜微创技术。在输尿管镜检查过程中,中空管腔的自动分割至关重要,因为它指示了内窥镜应遵循的路径。为了获得中空管腔的准确分割,本文提出了一种基于卷积神经网络(CNN)的自动方法。
该方法基于 4 个并行 CNN 的集合来同时处理单帧和多帧信息。其中,两个架构被用作核心模型,即基于残差块的 U-Net ([Formula: see text]) 和 Mask-RCNN ([Formula: see text]),它们接收单张静态图像 I(t)。另外两个模型 ([Formula: see text], [Formula: see text]) 是对前两个模型的修改,它们在添加一个阶段,该阶段利用 3D 卷积来处理时间信息。[Formula: see text], [Formula: see text] 接收帧的三胞胎 ([Formula: see text], I(t), [Formula: see text]),以生成 I(t)的分割。
使用从 6 名患者收集并手动注释的 11 个视频(2673 帧)的定制数据集评估了所提出的方法。我们获得了 0.80 的 Dice 相似系数,优于以前的最先进方法。
所得结果表明,时空信息可以通过集成模型有效地利用,以改善输尿管镜图像中空腔的分割。该方法在可视性差、偶尔出血或镜面反射的情况下也有效。