IEEE Trans Biomed Eng. 2021 Jun;68(6):1787-1798. doi: 10.1109/TBME.2020.3020381. Epub 2021 May 21.
Despite recent significant progress in the development of automatic sleep staging methods, building a good model still remains a big challenge for sleep studies with a small cohort due to the data-variability and data-inefficiency issues. This work presents a deep transfer learning approach to overcome these issues and enable transferring knowledge from a large dataset to a small cohort for automatic sleep staging.
We start from a generic end-to-end deep learning framework for sequence-to-sequence sleep staging and derive two networks as the means for transfer learning. The networks are first trained in the source domain (i.e. the large database). The pretrained networks are then finetuned in the target domain (i.e. the small cohort) to complete knowledge transfer. We employ the Montreal Archive of Sleep Studies (MASS) database consisting of 200 subjects as the source domain and study deep transfer learning on three different target domains: the Sleep Cassette subset and the Sleep Telemetry subset of the Sleep-EDF Expanded database, and the Surrey-cEEGrid database. The target domains are purposely adopted to cover different degrees of data mismatch to the source domains.
Our experimental results show significant performance improvement on automatic sleep staging on the target domains achieved with the proposed deep transfer learning approach.
These results suggest the efficacy of the proposed approach in addressing the above-mentioned data-variability and data-inefficiency issues.
As a consequence, it would enable one to improve the quality of automatic sleep staging models when the amount of data is relatively small.The source code and the pretrained models are published at https://github.com/pquochuy/sleep_transfer_learning.
尽管最近在自动睡眠分期方法的发展方面取得了重大进展,但由于数据可变性和数据效率低下的问题,对于小队列的睡眠研究来说,构建一个好的模型仍然是一个巨大的挑战。本研究提出了一种深度迁移学习方法,以克服这些问题,并实现从小队列到大型数据集的知识转移,从而实现自动睡眠分期。
我们从一个通用的端到端深度学习框架开始,用于序列到序列的睡眠分期,并得出两个网络作为迁移学习的手段。首先在源域(即大型数据库)中训练网络。然后,在目标域(即小队列)中对预训练的网络进行微调,以完成知识转移。我们使用包含 200 个受试者的蒙特利尔睡眠研究档案(MASS)数据库作为源域,并在三个不同的目标域上研究深度迁移学习:睡眠盒式录音子集和睡眠 EDF 扩展数据库的睡眠遥测子集,以及萨里大学的 cEEGrid 数据库。目标域被故意采用,以覆盖与源域不同程度的数据不匹配。
我们的实验结果表明,在所提出的深度迁移学习方法的基础上,在目标域上进行自动睡眠分期的性能显著提高。
这些结果表明,所提出的方法在解决上述数据可变性和数据效率低下问题方面是有效的。
因此,当数据量相对较少时,它可以提高自动睡眠分期模型的质量。源代码和预训练模型已发布在 https://github.com/pquochuy/sleep_transfer_learning。