Suppr超能文献

通过深度学习从抗体序列预测抗原特异性来优化治疗性抗体。

Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning.

机构信息

Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.

deepCDR Biologics, Basel, Switzerland.

出版信息

Nat Biomed Eng. 2021 Jun;5(6):600-612. doi: 10.1038/s41551-021-00699-9. Epub 2021 Apr 15.

Abstract

The optimization of therapeutic antibodies is time-intensive and resource-demanding, largely because of the low-throughput screening of full-length antibodies (approximately 1 × 10 variants) expressed in mammalian cells, which typically results in few optimized leads. Here we show that optimized antibody variants can be identified by predicting antigen specificity via deep learning from a massively diverse space of antibody sequences. To produce data for training deep neural networks, we deep-sequenced libraries of the therapeutic antibody trastuzumab (about 1 × 10 variants), expressed in a mammalian cell line through site-directed mutagenesis via CRISPR-Cas9-mediated homology-directed repair, and screened the libraries for specificity to human epidermal growth factor receptor 2 (HER2). We then used the trained neural networks to screen a computational library of approximately 1 × 10 trastuzumab variants and predict the HER2-specific subset (approximately 1 × 10 variants), which can then be filtered for viscosity, clearance, solubility and immunogenicity to generate thousands of highly optimized lead candidates. Recombinant expression and experimental testing of 30 randomly selected variants from the unfiltered library showed that all 30 retained specificity for HER2. Deep learning may facilitate antibody engineering and optimization.

摘要

治疗性抗体的优化是一个既费时又费力的过程,这主要是因为对在哺乳动物细胞中表达的全长抗体(大约 1×10 个变体)进行高通量筛选的效率很低,这通常导致很少有经过优化的先导化合物。在这里,我们展示了可以通过从抗体序列的大规模多样化空间中通过深度学习来预测抗原特异性,从而鉴定经过优化的抗体变体。为了生成用于训练深度神经网络的数据,我们通过 CRISPR-Cas9 介导的同源定向修复,对曲妥珠单抗(大约 1×10 个变体)的治疗性抗体进行了定点诱变,并在哺乳动物细胞系中表达,然后对这些变体文库进行了深测序,以筛选针对人表皮生长因子受体 2(HER2)的特异性。然后,我们使用训练好的神经网络筛选了大约 1×10 个曲妥珠单抗变体的计算文库,并预测了针对 HER2 的特异性亚库(大约 1×10 个变体),然后可以对其进行过滤,以去除粘度、清除率、溶解度和免疫原性,从而生成数千种高度优化的先导候选物。对未过滤文库中随机选择的 30 个变体进行重组表达和实验测试表明,这 30 个变体都保留了对 HER2 的特异性。深度学习可能有助于抗体工程和优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验