Suppr超能文献

通过对框架突变进行合理设计来调节抗体稳定性和功能。

Tuning antibody stability and function by rational designs of framework mutations.

作者信息

Ng Joseph C F, Chenoweth Alicia, De Sciscio Maria Laura, Grandits Melanie, Cheung Anthony, Chu Tooki, McCraw Alexandra, Chauhan Jitesh, Liu Yi, Guo Dongjun, Patel Semil, Kosmider Alice, Iancu Daniela, Karagiannis Sophia N, Fraternali Franca

机构信息

Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK.

Institute of Structural and Molecular Biology, University College London, London, UK.

出版信息

MAbs. 2025 Dec;17(1):2532117. doi: 10.1080/19420862.2025.2532117. Epub 2025 Jul 13.

Abstract

Artificial intelligence and machine learning models have been developed to engineer antibodies for specific recognition of antigens. These approaches, however, often focus on the antibody complementarity-determining region (CDR) whilst ignoring the immunoglobulin framework (FW), which provides structural rigidity and support for the flexible CDR loops. Here we present an integrated computational-experimental workflow, combining static structure analyses, molecular dynamics simulations and physicochemical and functional assays to generate rational designs of FW mutations for modulating antibody stability and activity. We first showed that recent antibody-specific language models lacked insights in FW mutagenesis, in comparison to approaches that use antibody structure information. Using the widely used breast cancer therapeutic trastuzumab as a use case, we designed stabilizing mutants which were distal to the CDR and preserved the antibody's functionality to engage its cognate antigen (HER2) and induce antibody-dependent cellular cytotoxicity. Interestingly, guided by local backbone motions predicted using molecular dynamics simulations, we designed a FW mutation on the trastuzumab light chain that retained antigen-binding effects, but lost Fab-mediated and Fc-mediated effector functions. This highlighted the effects of FW on immunological functions engendered in distal areas of the antibody, and the importance of considering attributes other than binding affinity when assessing antibody function. Our approach incorporates interdomain dynamics and distal effects between FW and the Fc domains, expands the scope of antibody engineering beyond the CDR, and underscores the importance of a holistic perspective that considers the entire antibody structure in optimizing antibody stability, developability and function.

摘要

人工智能和机器学习模型已被开发用于设计能够特异性识别抗原的抗体。然而,这些方法通常侧重于抗体互补决定区(CDR),而忽略了免疫球蛋白骨架(FW),后者为灵活的CDR环提供结构刚性和支撑。在此,我们展示了一种综合计算-实验工作流程,结合静态结构分析、分子动力学模拟以及物理化学和功能测定,以生成用于调节抗体稳定性和活性的FW突变的合理设计。我们首先表明,与使用抗体结构信息的方法相比,最近的抗体特异性语言模型在FW诱变方面缺乏见解。以广泛使用的乳腺癌治疗药物曲妥珠单抗为例,我们设计了位于CDR远端的稳定突变体,其保留了抗体与同源抗原(HER2)结合并诱导抗体依赖性细胞毒性的功能。有趣的是,在分子动力学模拟预测的局部主链运动的指导下,我们在曲妥珠单抗轻链上设计了一个FW突变,该突变保留了抗原结合效应,但丧失了Fab介导和Fc介导的效应功能。这突出了FW对抗体远端区域免疫功能的影响,以及在评估抗体功能时考虑结合亲和力以外的其他属性的重要性。我们的方法纳入了FW和Fc结构域之间的结构域间动力学和远端效应,将抗体工程的范围扩展到CDR之外,并强调了在优化抗体稳定性、可开发性和功能时考虑整个抗体结构的整体观点的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验