Suppr超能文献

新型微生物群推动太古宙含铁建造中的生产力。

Novel Microbial Groups Drive Productivity in an Archean Iron Formation.

作者信息

Sheik Cody S, Badalamenti Jonathan P, Telling Jon, Hsu David, Alexander Scott C, Bond Daniel R, Gralnick Jeffrey A, Lollar Barbara Sherwood, Toner Brandy M

机构信息

Department of Biology and the Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN, United States.

University of Minnesota Genomics Center, University of Minnesota Twin Cities, Minneapolis, MN, United States.

出版信息

Front Microbiol. 2021 Mar 30;12:627595. doi: 10.3389/fmicb.2021.627595. eCollection 2021.

Abstract

Deep subsurface environments are decoupled from Earth's surface processes yet diverse, active, and abundant microbial communities thrive in these isolated environments. Microbes inhabiting the deep biosphere face unique challenges such as electron donor/acceptor limitations, pore space/fracture network limitations, and isolation from other microbes within the formation. Of the few systems that have been characterized, it is apparent that nutrient limitations likely facilitate diverse microbe-microbe interactions (i.e., syntrophic, symbiotic, or parasitic) and that these interactions drive biogeochemical cycling of major elements. Here we describe microbial communities living in low temperature, chemically reduced brines at the Soudan Underground Mine State Park, United States. The Soudan Iron mine intersects a massive hematite formation at the southern extent of the Canadian Shield. Fractured rock aquifer brines continuously flow from exploratory boreholes drilled circa 1960 and are enriched in deuterium compared to the global meteoric values, indicating brines have had little contact with surface derived waters, and continually degas low molecular weight hydrocarbons C-C. Microbial enrichments suggest that once brines exit the boreholes, oxidation of the hydrocarbons occur. Amplicon sequencing show these borehole communities are low in diversity and dominated by Firmicute and Proteobacteria phyla. From the metagenome assemblies, we recovered approximately thirty genomes with estimated completion over 50%. Analysis of genome taxonomy generally followed the amplicon data, and highlights that several of the genomes represent novel families and genera. Metabolic reconstruction shows two carbon-fixation pathways were dominant, the Wood-Ljungdahl (acetogenesis) and Calvin-Benson-Bassham (via RuBisCo), indicating that inorganic carbon likely enters into the microbial foodweb with differing carbon fractionation potentials. Interestingly, methanogenesis is likely driven by and suggests cycling of methylated compounds and not H/CO or acetate. Furthermore, the abundance of sulfate in brines suggests cryptic sulfur cycling may occur, as we detect possible sulfate reducing and thiosulfate oxidizing microorganisms. Finally, a majority of the microorganisms identified contain genes that would allow them to participate in several element cycles, highlighting that in these deep isolated systems metabolic flexibility may be an important life history trait.

摘要

深部地下环境与地球表面过程相分离,但多样、活跃且丰富的微生物群落却在这些孤立环境中蓬勃发展。栖息于深部生物圈的微生物面临着独特的挑战,如电子供体/受体限制、孔隙空间/裂隙网络限制以及与地层内其他微生物的隔离。在少数已被表征的系统中,很明显营养限制可能促进了多样的微生物-微生物相互作用(即互营、共生或寄生),并且这些相互作用驱动了主要元素的生物地球化学循环。在此,我们描述了生活在美国苏必利尔地下矿州立公园低温、化学还原卤水中的微生物群落。苏必利尔铁矿在加拿大盾地南部延伸处与块状赤铁矿层相交。裂隙岩石含水层卤水从大约1960年钻的勘探钻孔中持续流出,与全球大气降水值相比,其氘含量富集,这表明卤水与地表衍生水几乎没有接触,并且不断释放低分子量碳氢化合物C-C。微生物富集表明,一旦卤水流出钻孔,碳氢化合物就会发生氧化。扩增子测序显示,这些钻孔群落的多样性较低,以厚壁菌门和变形菌门为主。从宏基因组组装中,我们获得了大约30个估计完整性超过50%的基因组。基因组分类分析总体上与扩增子数据一致,并突出表明其中几个基因组代表了新的科和属。代谢重建表明,两种碳固定途径占主导地位,即伍德-Ljungdahl途径(产乙酸)和卡尔文-本森-巴斯德姆途径(通过核酮糖-1,5-二磷酸羧化酶/加氧酶),这表明无机碳可能以不同的碳分馏潜力进入微生物食物网。有趣的是,甲烷生成可能由甲基化化合物驱动,这表明甲基化化合物而非H/CO或乙酸盐存在循环。此外,卤水中硫酸盐的丰度表明可能存在隐蔽的硫循环,因为我们检测到了可能的硫酸盐还原和硫代硫酸盐氧化微生物。最后,鉴定出的大多数微生物含有使其能够参与多个元素循环的基因,这突出表明在这些深部孤立系统中,代谢灵活性可能是一种重要的生活史特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f43/8042283/8302d4ef31d4/fmicb-12-627595-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验