Suppr超能文献

使用可解释的机器学习预测入住重症监护病房患者的血流感染和抗菌药物耐药性:基于电子健康记录数据的早期警报预测指标以指导抗菌药物管理。

Using interpretable machine learning to predict bloodstream infection and antimicrobial resistance in patients admitted to ICU: Early alert predictors based on EHR data to guide antimicrobial stewardship.

作者信息

Ferrari Davide, Arina Pietro, Edgeworth Jonathan, Curcin Vasa, Guidetti Veronica, Mandreoli Federica, Wang Yanzhong

机构信息

School of Life Course and Population Sciences, King's College London, London, United Kingdom.

Centre for Clinical Infection & Diagnostics Research, St. Thomas' Hospital, London, United Kingdom.

出版信息

PLOS Digit Health. 2024 Oct 16;3(10):e0000641. doi: 10.1371/journal.pdig.0000641. eCollection 2024 Oct.

Abstract

Nosocomial infections and Antimicrobial Resistance (AMR) stand as formidable healthcare challenges on a global scale. To address these issues, various infection control protocols and personalized treatment strategies, guided by laboratory tests, aim to detect bloodstream infections (BSI) and assess the potential for AMR. In this study, we introduce a machine learning (ML) approach based on Multi-Objective Symbolic Regression (MOSR), an evolutionary approach to create ML models in the form of readable mathematical equations in a multi-objective way to overcome the limitation of standard single-objective approaches. This method leverages readily available clinical data collected upon admission to intensive care units, with the goal of predicting the presence of BSI and AMR. We further assess its performance by comparing it to established ML algorithms using both naturally imbalanced real-world data and data that has been balanced through oversampling techniques. Our findings reveal that traditional ML models exhibit subpar performance across all training scenarios. In contrast, MOSR, specifically configured to minimize false negatives by optimizing also for the F1-Score, outperforms other ML algorithms and consistently delivers reliable results, irrespective of the training set balance with F1-Score.22 and.28 higher than any other alternative. This research signifies a promising path forward in enhancing Antimicrobial Stewardship (AMS) strategies. Notably, the MOSR approach can be readily implemented on a large scale, offering a new ML tool to find solutions to these critical healthcare issues affected by limited data availability.

摘要

医院感染和抗菌药物耐药性(AMR)是全球范围内严峻的医疗挑战。为解决这些问题,以实验室检测为指导的各种感染控制方案和个性化治疗策略旨在检测血流感染(BSI)并评估AMR的可能性。在本研究中,我们引入了一种基于多目标符号回归(MOSR)的机器学习(ML)方法,这是一种进化方法,以多目标方式创建可读数学方程形式的ML模型,以克服标准单目标方法的局限性。该方法利用重症监护病房入院时收集的现成临床数据,目标是预测BSI和AMR的存在。我们通过使用自然不平衡的真实世界数据和通过过采样技术平衡的数据,将其与既定的ML算法进行比较,进一步评估其性能。我们的研究结果表明,传统的ML模型在所有训练场景中表现不佳。相比之下,专门配置为通过优化F1分数来最小化假阴性的MOSR优于其他ML算法,并且始终提供可靠的结果,无论训练集平衡如何,F1分数比任何其他替代方案高22和28。这项研究标志着在加强抗菌药物管理(AMS)策略方面有一条充满希望的前进道路。值得注意的是,MOSR方法可以很容易地大规模实施,提供一种新的ML工具来找到解决这些受数据可用性限制影响的关键医疗问题的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e49a/11482717/1c6c0b90672e/pdig.0000641.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验