Suppr超能文献

一种用于预测鲍曼不动杆菌医院获得性感染的机器学习模型。

A machine-learning model for prediction of Acinetobacter baumannii hospital acquired infection.

作者信息

Neuman Ido, Shvartser Leonid, Teppler Shmuel, Friedman Yehoshua, Levine Jacob J, Kagan Ilya, Bishara Jihad, Kushinir Shiri, Singer Pierre

机构信息

Department of General Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel.

TSG IT Advanced Systems Ltd., Or Yehuda, Israel.

出版信息

PLoS One. 2024 Dec 5;19(12):e0311576. doi: 10.1371/journal.pone.0311576. eCollection 2024.

Abstract

BACKGROUND

Acinetobacter baumanni infection is a leading cause of morbidity and mortality in the Intensive Care Unit (ICU). Early recognition of patients at risk for infection allows early proper treatment and is associated with improved outcomes. This study aimed to construct an innovative Machine Learning (ML) based prediction tool for Acinetobacter baumanni infection, among patients in the ICU, and to examine its robustness and predictive power.

METHODS

For model development and internal validation, we used The Medical Information Mart for Intensive Care database (MIMIC) III data from 19,690 consecutive adult patients admitted between 2001 and 2012 at a Boston tertiary center ICU. For external validation, we used a different dataset from Rabin Medical Center (RMC, Israeli tertiary center) ICU, of 1,700 patients admitted between 2017 and 2021. After training on MIMIC cohorts, we adapted the algorithm from MIMIC to RMC and evaluated its discriminating power in terms of Area Under the Receiver Operating Curve (AUROC), sensitivity, specificity, Negative Predictive Value and Positive Predictive Value.

RESULTS

The prediction model achieved AUROC = 0.624 (95% CI 0.604-0.647). The most significant predictors were (i) physiological parameters of cardio-respiratory function, such as carbon dioxide (CO2) levels and respiratory rate, (ii) metabolic disturbances such as lactate and acidosis (pH) and (iii) past administration of antibiotics.

CONCLUSIONS

Infection with Acinetobacter baumanni is more likely to occur in patients with respiratory failure and higher lactate levels, as well as patients who have used larger amounts of antibiotics. The accuracy of Acinetobacter prediction may be enhanced by future studies.

摘要

背景

鲍曼不动杆菌感染是重症监护病房(ICU)发病和死亡的主要原因。早期识别有感染风险的患者可实现早期恰当治疗,并与改善预后相关。本研究旨在构建一种基于机器学习(ML)的创新预测工具,用于预测ICU患者的鲍曼不动杆菌感染,并检验其稳健性和预测能力。

方法

为进行模型开发和内部验证,我们使用了医学重症监护信息数据库(MIMIC)III的数据,该数据来自2001年至2012年期间在波士顿一家三级中心ICU连续收治的19,690例成年患者。为进行外部验证,我们使用了来自拉宾医疗中心(RMC,以色列三级中心)ICU的不同数据集,该数据集包含2017年至2021年期间收治的1,700例患者。在MIMIC队列上进行训练后,我们将算法从MIMIC调整到RMC,并根据受试者操作特征曲线下面积(AUROC)、敏感性、特异性、阴性预测值和阳性预测值评估其区分能力。

结果

预测模型的AUROC = 0.624(95%CI 0.604 - 0.647)。最显著的预测因素为:(i)心肺功能的生理参数,如二氧化碳(CO2)水平和呼吸频率;(ii)代谢紊乱,如乳酸和酸中毒(pH);以及(iii)既往使用抗生素情况。

结论

鲍曼不动杆菌感染更易发生于呼吸衰竭、乳酸水平较高以及使用大量抗生素的患者中。未来的研究可能会提高鲍曼不动杆菌预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d9a/11620386/00b361e1a25b/pone.0311576.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验