Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India; Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
Deparment of Botany, MaharshiDayanand University, Rohtak, Haryana, 124001, India.
Food Chem Toxicol. 2021 Jun;152:112201. doi: 10.1016/j.fct.2021.112201. Epub 2021 Apr 20.
Aflatoxin B1 (AFB1) is one of the most potent mycotoxin contaminating several foods and feeds. It suppresses immunity and consequently increases mutagenicity, carcinogenicity, teratogenicity, hepatotoxicity, embryonic toxicity and increasing morbidity and mortality. Continuous exposure of AFB1 causes liver damage and thus increases the prevalence of cirrhosis and hepatic cancer. This article was planned to provide understanding of AFB1 toxicity and provides future directions for fabrication of cost effective and user-friendly nanomaterials based analytical devices. In the present article various conventional (chromatographic & spectroscopic), modern (PCR & immunoassays) and nanomaterials based biosensing techniques (electrochemical, optical, piezoelectrical and microfluidic) are discussed alongwith their merits and demerits. Nanomaterials based amperometric biosensors are found to be more stable, selective and cost-effective analytical devices in comparison to other biosensors. But many unresolved issues about their stability, toxicity and metabolic fate needs further studies. In-depth studies are needed for development of advanced nanomaterials integrated biosensors for specific, sensitive and fast monitoring of AFB1 toxicity in foods. Integration of biosensing system with micro array technology for simultaneous and automated detection of multiple AFs in real samples is also needed. Concerted efforts are also required to reduce their possible hazardous consequences of nanomaterials based biosensors.
黄曲霉毒素 B1(AFB1)是污染多种食品和饲料的最具毒性的霉菌毒素之一。它会抑制免疫力,从而增加致突变性、致癌性、致畸性、肝毒性、胚胎毒性以及发病率和死亡率。持续接触 AFB1 会导致肝脏损伤,从而增加肝硬化和肝癌的患病率。本文旨在提供对 AFB1 毒性的理解,并为制造具有成本效益和用户友好的基于纳米材料的分析设备提供未来的方向。在本文中,讨论了各种传统(色谱和光谱)、现代(PCR 和免疫分析)和基于纳米材料的生物传感技术(电化学、光学、压电和微流控),以及它们的优点和缺点。与其他生物传感器相比,基于纳米材料的安培生物传感器被发现是更稳定、更具选择性和更具成本效益的分析设备。但关于它们的稳定性、毒性和代谢命运的许多未解决的问题仍需要进一步研究。需要进行深入的研究,以开发用于特定、敏感和快速监测食品中 AFB1 毒性的先进纳米材料集成生物传感器。还需要将生物传感系统与微阵列技术集成,用于实时样品中多种 AF 的同时和自动化检测。还需要共同努力,以减少基于纳米材料的生物传感器可能产生的危险后果。