Suppr超能文献

# 医生发声:从一场支持疫苗接种的推特活动中学到的经验教训

#DoctorsSpeakUp: Lessons learned from a pro-vaccine Twitter event.

作者信息

Hoffman Beth L, Colditz Jason B, Shensa Ariel, Wolynn Riley, Taneja Sanya Bathla, Felter Elizabeth M, Wolynn Todd, Sidani Jaime E

机构信息

Department of Behavioral and Community Health Sciences, Graduate School of Public Health, University of Pittsburgh, 130 De Sotto Street, Pittsburgh, PA 15261, United States; Division of General Internal Medicine, Department of Medicine, University of Pittsburgh, School of Medicine, 1218 Scaife Hall, 35505 Terrace Street, Pittsburgh, PA 15261, United States; Center for Behavioral Health, Media, and Technology, University of Pittsburgh, School of Medicine, 230 McKee Place, Suite 600, Pittsburgh, PA 15213, United States.

Division of General Internal Medicine, Department of Medicine, University of Pittsburgh, School of Medicine, 1218 Scaife Hall, 35505 Terrace Street, Pittsburgh, PA 15261, United States; Center for Behavioral Health, Media, and Technology, University of Pittsburgh, School of Medicine, 230 McKee Place, Suite 600, Pittsburgh, PA 15213, United States.

出版信息

Vaccine. 2021 May 6;39(19):2684-2691. doi: 10.1016/j.vaccine.2021.03.061. Epub 2021 Apr 13.

Abstract

BACKGROUND

In response to growing anti-vaccine activism on social media, the #DoctorsSpeakUp event was designed to promote pro-vaccine advocacy. This study aimed to analyze Twitter content related to the event to determine (1) characteristics of the Twitter users who authored these tweets, (2) the proportion of tweets expressing pro-vaccine compared to anti-vaccine sentiment, and (3) the content of these tweets.

METHODS

Data were collected using Twitter's Filtered Streams Interface, and included all publicly available tweets with the "#DoctorsSpeakUp" hashtag on March 5, 2020, the day of the event. Two independent coders assessed a 5% subsample of original tweets (n = 966) using a thematic content analysis approach. Cohen's κ ranged 0.71-1.00 for all categories. Chi-square and Fisher's exact tests were used to examine associations between tweet sentiment, type of account, and tweet content (personal narrative and/or statement about research or science). Accounts were analyzed for likelihood of being a bot (i.e. automated account) using Botometer.

RESULTS

Of 847 (87.7%) relevant tweets, 244 (28.8%) were authored by a Twitter user that identified as a parent and 68 (8.0%) by a user that identified as a health professional. With regard to sentiment, 167 (19.7%) were coded as pro-vaccine and 668 (78.9%) were coded as anti-vaccine. Tweet sentiment was significantly associated with type of account (p < 0.001) and tweet content (p = 0.001). Of the 575 unique users in our dataset, 31 (5.4%) were classified as bots using Botometer.

CONCLUSIONS

Our results suggest a highly coordinated response of devoted anti-vaccine antagonists in response to the #DoctorsSpeakUp event. These findings can be used to help vaccine advocates leverage social media more effectively to promote vaccines. Specifically, it would be valuable to ensure that pro-vaccine messages consider hashtag use and pre-develop messages that can be launched and promoted by pro-vaccine advocates.

摘要

背景

为应对社交媒体上日益增长的反疫苗激进主义,“医生发声”活动旨在促进支持疫苗的宣传。本研究旨在分析与该活动相关的推特内容,以确定:(1)撰写这些推文的推特用户的特征;(2)表达支持疫苗与反对疫苗情绪的推文比例;(3)这些推文的内容。

方法

使用推特的过滤流接口收集数据,包括2020年3月5日活动当天带有“#医生发声”主题标签的所有公开可用推文。两名独立编码员采用主题内容分析方法对原始推文的5%子样本(n = 966)进行评估。所有类别的科恩kappa系数在0.71至1.00之间。使用卡方检验和费舍尔精确检验来检验推文情绪、账户类型和推文内容(个人叙述和/或关于研究或科学的陈述)之间的关联。使用Botometer分析账户是否为机器人账户(即自动账户)的可能性。

结果

在847条(87.7%)相关推文中,244条(28.8%)由自称为家长的推特用户撰写,68条(8.0%)由自称为健康专业人员的用户撰写。在情绪方面,167条(19.7%)被编码为支持疫苗,668条(78.9%)被编码为反对疫苗。推文情绪与账户类型(p < 0.001)和推文内容(p = 0.001)显著相关。在我们的数据集中的575个唯一用户中,31个(5.4%)使用Botometer被归类为机器人账户。

结论

我们的结果表明,在“医生发声”活动中,坚定的反疫苗反对者做出了高度协调的回应。这些发现可用于帮助疫苗倡导者更有效地利用社交媒体来推广疫苗。具体而言,确保支持疫苗的信息考虑主题标签的使用,并预先制定可由支持疫苗的倡导者发布和推广的信息将很有价值。

相似文献

1
#DoctorsSpeakUp: Lessons learned from a pro-vaccine Twitter event.
Vaccine. 2021 May 6;39(19):2684-2691. doi: 10.1016/j.vaccine.2021.03.061. Epub 2021 Apr 13.
2
#DoctorsSpeakUp: Exploration of Hashtag Hijacking by Anti-Vaccine Advocates and the Influence of Scientific Counterpublics on Twitter.
Health Commun. 2023 Oct;38(10):2167-2177. doi: 10.1080/10410236.2022.2058159. Epub 2022 Apr 18.
4
Statin Twitter: Human and Automated Bot Contributions, 2010 to 2022.
J Am Heart Assoc. 2024 Apr 2;13(7):e032678. doi: 10.1161/JAHA.123.032678. Epub 2024 Mar 27.
5
Social media analytics and reachability evaluation - #Diabetes.
Diabetes Metab Syndr. 2022 Jan;16(1):102359. doi: 10.1016/j.dsx.2021.102359. Epub 2021 Dec 4.
6
Online Influence and Sentiment of Fitness Tweets: Analysis of Two Million Fitness Tweets.
JMIR Public Health Surveill. 2017 Oct 31;3(4):e82. doi: 10.2196/publichealth.8507.
8
Identifying Sentiment of Hookah-Related Posts on Twitter.
JMIR Public Health Surveill. 2017 Oct 18;3(4):e74. doi: 10.2196/publichealth.8133.
9
Using Twitter for breast cancer prevention: an analysis of breast cancer awareness month.
BMC Cancer. 2013 Oct 29;13:508. doi: 10.1186/1471-2407-13-508.
10
Geographic Differences in Cannabis Conversations on Twitter: Infodemiology Study.
JMIR Public Health Surveill. 2020 Oct 5;6(4):e18540. doi: 10.2196/18540.

引用本文的文献

1
US State Public Health Agencies' Use of Twitter From 2012 to 2022: Observational Study.
J Med Internet Res. 2025 Jan 3;27:e59786. doi: 10.2196/59786.
2
A taxonomy of anti-vaccination arguments from a systematic literature review and text modelling.
Nat Hum Behav. 2023 Sep;7(9):1462-1480. doi: 10.1038/s41562-023-01644-3. Epub 2023 Jul 17.
4
COVID-19 Vaccine Hesitancy, Acceptance, and Promotion Among Healthcare Workers: A Mixed-Methods Analysis.
J Community Health. 2022 Oct;47(5):750-758. doi: 10.1007/s10900-022-01095-3. Epub 2022 Jun 8.
5
Commentary: "The vaccine Selfie" and its influence on COVID-19 vaccine acceptance.
Vaccine. 2022 May 20;40(23):3085-3086. doi: 10.1016/j.vaccine.2022.04.063. Epub 2022 Apr 27.
8
Conflicting attitudes: Analyzing social media data to understand the early discourse on COVID-19 passports.
Technol Soc. 2022 Feb;68:101830. doi: 10.1016/j.techsoc.2021.101830. Epub 2021 Dec 8.

本文引用的文献

1
Not just conspiracy theories: Vaccine opponents and proponents add to the COVID-19 'infodemic' on Twitter.
Harv Kennedy Sch Misinformation Rev. 2020 Sep;1. doi: 10.37016/mr-2020-38. Epub 2020 Sep 9.
2
Analysis of the Anti-Vaccine Movement in Social Networks: A Systematic Review.
Int J Environ Res Public Health. 2020 Jul 27;17(15):5394. doi: 10.3390/ijerph17155394.
3
From "Infodemics" to Health Promotion: A Novel Framework for the Role of Social Media in Public Health.
Am J Public Health. 2020 Sep;110(9):1393-1396. doi: 10.2105/AJPH.2020.305746. Epub 2020 Jun 18.
4
The online competition between pro- and anti-vaccination views.
Nature. 2020 Jun;582(7811):230-233. doi: 10.1038/s41586-020-2281-1. Epub 2020 May 13.
5
Measles: taking steps forward to prevent going backwards.
Curr Opin Pediatr. 2020 Jun;32(3):436-445. doi: 10.1097/MOP.0000000000000895.
6
Cannabis Surveillance With Twitter Data: Emerging Topics and Social Bots.
Am J Public Health. 2020 Mar;110(3):357-362. doi: 10.2105/AJPH.2019.305461. Epub 2019 Dec 19.
7
Characterizing HPV Vaccine Sentiments and Content on Instagram.
Health Educ Behav. 2019 Dec;46(2_suppl):37-48. doi: 10.1177/1090198119859412.
8
How organisations promoting vaccination respond to misinformation on social media: a qualitative investigation.
BMC Public Health. 2019 Oct 23;19(1):1348. doi: 10.1186/s12889-019-7659-3.
9
It's not all about autism: The emerging landscape of anti-vaccination sentiment on Facebook.
Vaccine. 2019 Apr 10;37(16):2216-2223. doi: 10.1016/j.vaccine.2019.03.003. Epub 2019 Mar 21.
10
Malicious Actors on Twitter: A Guide for Public Health Researchers.
Am J Public Health. 2019 May;109(5):688-692. doi: 10.2105/AJPH.2019.304969. Epub 2019 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验