Suppr超能文献

推特上关于大麻的讨论存在地域差异:一项信息流行病学研究。

Geographic Differences in Cannabis Conversations on Twitter: Infodemiology Study.

机构信息

Department of Sociology, University of British Columbia, Vancouver, BC, Canada.

Department of Computer Science, University of Victoria, Victoria, BC, Canada.

出版信息

JMIR Public Health Surveill. 2020 Oct 5;6(4):e18540. doi: 10.2196/18540.

Abstract

BACKGROUND

Infodemiology is an emerging field of research that utilizes user-generated health-related content, such as that found in social media, to help improve public health. Twitter has become an important venue for studying emerging patterns in health issues such as substance use because it can reflect trends in real-time and display messages generated directly by users, giving a uniquely personal voice to analyses. Over the past year, several states in the United States have passed legislation to legalize adult recreational use of cannabis and the federal government in Canada has done the same. There are few studies that examine the sentiment and content of tweets about cannabis since the recent legislative changes regarding cannabis have occurred in North America.

OBJECTIVE

To examine differences in the sentiment and content of cannabis-related tweets by state cannabis laws, and to examine differences in sentiment between the United States and Canada between 2017 and 2019.

METHODS

In total, 1,200,127 cannabis-related tweets were collected from January 1, 2017, to June 17, 2019, using the Twitter application programming interface. Tweets then were grouped geographically based on cannabis legal status (legal for adult recreational use, legal for medical use, and no legal use) in the locations from which the tweets came. Sentiment scoring for the tweets was done with VADER (Valence Aware Dictionary and sEntiment Reasoner), and differences in sentiment for states with different cannabis laws were tested using Tukey adjusted two-sided pairwise comparisons. Topic analysis to determine the content of tweets was done using latent Dirichlet allocation in Python, using a Java implementation, LdaMallet, with Gensim wrapper.

RESULTS

Significant differences were seen in tweet sentiment between US states with different cannabis laws (P=.001 for negative sentiment tweets in fully illegal compared to legal for adult recreational use states), as well as between the United States and Canada (P=.003 for positive sentiment and P=.001 for negative sentiment). In both cases, restrictive state policy environments (eg, those where cannabis use is fully illegal, or legal for medical use only) were associated with more negative tweet sentiment than less restrictive policy environments (eg, where cannabis is legal for adult recreational use). Six key topics were found in recent US tweet contents: fun and recreation (keywords, eg, love, life, high); daily life (today, start, live); transactions (buy, sell, money); places of use (room, car, house); medical use and cannabis industry (business, industry, company); and legalization (legalize, police, tax). The keywords representing content of tweets also differed between the United States and Canada.

CONCLUSIONS

Knowledge about how cannabis is being discussed online, and geographic differences that exist in these conversations may help to inform public health planning and prevention efforts. Public health education about how to use cannabis in ways that promote safety and minimize harms may be especially important in places where cannabis is legal for adult recreational and medical use.

摘要

背景

信息流行病学是一个新兴的研究领域,利用用户生成的与健康相关的内容,如社交媒体中的内容,以帮助改善公众健康。Twitter 已成为研究物质使用等健康问题新出现模式的重要场所,因为它可以实时反映趋势,并显示用户直接生成的消息,为分析提供独特的个人视角。在过去的一年里,美国的几个州已经通过立法将成人娱乐用大麻合法化,加拿大联邦政府也已经这样做了。由于北美最近关于大麻的立法发生了变化,因此很少有研究检查有关大麻的推文的情绪和内容。

目的

通过州大麻法律检查与大麻相关的推文的情绪和内容差异,并检查 2017 年至 2019 年美国和加拿大之间的情绪差异。

方法

总共从 2017 年 1 月 1 日至 2019 年 6 月 17 日,使用 Twitter 应用程序编程接口从 1200127 条与大麻相关的推文中收集了推文。然后根据推文来源地的大麻法律地位(成人娱乐用大麻合法化、医用大麻合法化和大麻使用非法)对推文进行地理分组。使用 VADER(Valence Aware Dictionary and sEntiment Reasoner)对推文进行情绪评分,并使用 Tukey 调整的双侧成对比较测试具有不同大麻法律的州之间的情绪差异。使用 Python 中的潜在狄利克雷分配(latent Dirichlet allocation)和 Gensim 包装器中的 Java 实现 LdaMallet 进行主题分析以确定推文的内容。

结果

不同大麻法律的美国各州之间的推文情绪存在显著差异(完全非法州的负面情绪推文与成人娱乐用大麻合法化州相比,P=.001),美国和加拿大之间也存在差异(P=.003 为积极情绪,P=.001 为消极情绪)。在这两种情况下,限制州政策环境(例如,大麻完全非法或仅用于医疗用途)与限制较少的政策环境(例如,大麻用于成人娱乐)相比,与更消极的推文情绪相关。在最近的美国推文中发现了六个关键主题:娱乐和娱乐(关键词,例如,爱,生活,高);日常生活(今天,开始,生活);交易(购买,销售,金钱);使用场所(房间,汽车,房屋);医疗用途和大麻行业(商业,行业,公司);以及合法化(合法化,警察,税收)。代表推文内容的关键词在美国和加拿大之间也有所不同。

结论

了解大麻在网上的讨论情况以及这些对话中存在的地理差异,可能有助于为公共卫生规划和预防工作提供信息。在大麻用于成人娱乐和医疗用途合法化的地方,关于如何以促进安全和尽量减少危害的方式使用大麻的公共卫生教育可能特别重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f93/7573699/91cf08172833/publichealth_v6i4e18540_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验