Gorce Jean-Baptiste, Bliokh Konstantin Y, Xia Hua, Francois Nicolas, Punzmann Horst, Shats Michael
Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia.
Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan.
Sci Adv. 2021 Apr 16;7(16). doi: 10.1126/sciadv.abd4632. Print 2021 Apr.
Angular momentum of spinning bodies leads to their remarkable interactions with fields, waves, fluids, and solids. Orbiting celestial bodies, balls in sports, liquid droplets above a hot plate, nanoparticles in optical fields, and spinning quantum particles exhibit nontrivial rotational dynamics. Here, we report self-guided propulsion of magnetic fast-spinning particles on a liquid surface in the presence of a solid boundary. Above some critical spinning frequency, such particles generate localized 3D vortices and form composite "spinner-vortex" quasiparticles with nontrivial, yet robust dynamics. Such spinner-vortices are attracted and dynamically trapped near the boundaries, propagating along the wall of any shape similarly to "liquid wheels." The propulsion velocity and the distance to the wall are controlled by the angular velocity of the spinner via the balance between the Magnus and wall repulsion forces. Our results offer a new type of surface vehicles and provide a powerful tool to manipulate spinning objects in fluids.
旋转物体的角动量导致它们与场、波、流体和固体发生显著的相互作用。轨道运行的天体、体育运动中的球、热板上方的液滴、光场中的纳米颗粒以及旋转的量子粒子都表现出不平凡的旋转动力学。在此,我们报告了在存在固体边界的情况下,磁性快速旋转粒子在液体表面的自驱动推进。在高于某个临界旋转频率时,此类粒子会产生局部三维涡旋,并形成具有不平凡但稳健动力学的复合“旋转体 - 涡旋”准粒子。这种旋转体 - 涡旋被吸引并动态捕获在边界附近,沿着任何形状的壁传播,类似于“液体轮”。推进速度和到壁的距离通过旋转体的角速度,由马格努斯力和壁排斥力之间的平衡来控制。我们的结果提供了一种新型的表面飞行器,并为在流体中操纵旋转物体提供了一个强大的工具。