Suppr超能文献

用于时间复杂网络的低复杂度双曲嵌入方案。

Low-Complexity Hyperbolic Embedding Schemes for Temporal Complex Networks.

机构信息

School of Electronic Information, Wuhan University, Wuhan 430072, China.

Wuhan Digital Engineering Institute, Wuhan 430074, China.

出版信息

Sensors (Basel). 2022 Nov 29;22(23):9306. doi: 10.3390/s22239306.

Abstract

Hyperbolic embedding can effectively preserve the property of complex networks. Though some state-of-the-art hyperbolic node embedding approaches are proposed, most of them are still not well suited for the dynamic evolution process of temporal complex networks. The complexities of the adaptability and embedding update to the scale of complex networks with moderate variation are still challenging problems. To tackle the challenges, we propose hyperbolic embedding schemes for the temporal complex network within two dynamic evolution processes. First, we propose a low-complexity hyperbolic embedding scheme by using matrix perturbation, which is well-suitable for medium-scale complex networks with evolving temporal characteristics. Next, we construct the geometric initialization by merging nodes within the hyperbolic circular domain. To realize fast initialization for a large-scale network, an R tree is used to search the nodes to narrow down the search range. Our evaluations are implemented for both synthetic networks and realistic networks within different downstream applications. The results show that our hyperbolic embedding schemes have low complexity and are adaptable to networks with different scales for different downstream tasks.

摘要

双曲嵌入可以有效地保留复杂网络的特性。虽然已经提出了一些最先进的双曲节点嵌入方法,但它们大多数仍然不太适合时间复杂网络的动态演化过程。对于具有适度变化的复杂网络的适应性和嵌入更新的复杂性仍然是具有挑战性的问题。为了解决这些挑战,我们提出了两种动态演化过程中的时间复杂网络的双曲嵌入方案。首先,我们提出了一种基于矩阵摄动的低复杂度双曲嵌入方案,非常适合具有时变特性的中等规模复杂网络。接下来,我们通过合并双曲圆形域内的节点来构建几何初始化。为了实现大规模网络的快速初始化,使用 R 树搜索节点来缩小搜索范围。我们的评估在不同下游应用程序中的合成网络和真实网络上进行。结果表明,我们的双曲嵌入方案具有低复杂度,并且可以适应不同规模的网络用于不同的下游任务。

相似文献

1
Low-Complexity Hyperbolic Embedding Schemes for Temporal Complex Networks.
Sensors (Basel). 2022 Nov 29;22(23):9306. doi: 10.3390/s22239306.
2
Manifold learning and maximum likelihood estimation for hyperbolic network embedding.
Appl Netw Sci. 2016;1(1):10. doi: 10.1007/s41109-016-0013-0. Epub 2016 Nov 15.
3
Optimisation of the coalescent hyperbolic embedding of complex networks.
Sci Rep. 2021 Apr 16;11(1):8350. doi: 10.1038/s41598-021-87333-5.
4
5
Machine learning meets complex networks via coalescent embedding in the hyperbolic space.
Nat Commun. 2017 Nov 20;8(1):1615. doi: 10.1038/s41467-017-01825-5.
6
Greedy routing optimisation in hyperbolic networks.
Sci Rep. 2023 Dec 27;13(1):23026. doi: 10.1038/s41598-023-50244-8.
7
Temporal Network Embedding for Link Prediction via VAE Joint Attention Mechanism.
IEEE Trans Neural Netw Learn Syst. 2022 Dec;33(12):7400-7413. doi: 10.1109/TNNLS.2021.3084957. Epub 2022 Nov 30.
8
A Novel Temporal Network-Embedding Algorithm for Link Prediction in Dynamic Networks.
Entropy (Basel). 2023 Jan 31;25(2):257. doi: 10.3390/e25020257.
9
Hyperbolic Graph Convolutional Neural Networks.
Adv Neural Inf Process Syst. 2019 Dec;32:4869-4880.

本文引用的文献

1
Optimisation of the coalescent hyperbolic embedding of complex networks.
Sci Rep. 2021 Apr 16;11(1):8350. doi: 10.1038/s41598-021-87333-5.
2
Manifold learning and maximum likelihood estimation for hyperbolic network embedding.
Appl Netw Sci. 2016;1(1):10. doi: 10.1007/s41109-016-0013-0. Epub 2016 Nov 15.
3
Machine learning meets complex networks via coalescent embedding in the hyperbolic space.
Nat Commun. 2017 Nov 20;8(1):1615. doi: 10.1038/s41467-017-01825-5.
4
node2vec: Scalable Feature Learning for Networks.
KDD. 2016 Aug;2016:855-864. doi: 10.1145/2939672.2939754.
6
7
Network geometry inference using common neighbors.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022807. doi: 10.1103/PhysRevE.92.022807. Epub 2015 Aug 12.
8
9
Popularity versus similarity in growing networks.
Nature. 2012 Sep 27;489(7417):537-40. doi: 10.1038/nature11459. Epub 2012 Sep 12.
10
Hyperbolic geometry of complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):036106. doi: 10.1103/PhysRevE.82.036106. Epub 2010 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验