Suppr超能文献

杂种作物的基因组预测可以区分显性和上位性。

Genomic prediction of hybrid crops allows disentangling dominance and epistasis.

机构信息

INRAE, INP, UMR 1388 GenPhySE, F-31326 Castanet-Tolosan, France.

GQE-Le Moulon, INRAE, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.

出版信息

Genetics. 2021 May 17;218(1). doi: 10.1093/genetics/iyab026.

Abstract

We revisited, in a genomic context, the theory of hybrid genetic evaluation models of hybrid crosses of pure lines, as the current practice is largely based on infinitesimal model assumptions. Expressions for covariances between hybrids due to additive substitution effects and dominance and epistatic deviations were analytically derived. Using dense markers in a GBLUP analysis, it is possible to split specific combining ability into dominance and across-groups epistatic deviations, and to split general combining ability (GCA) into within-line additive effects and within-line additive by additive (and higher order) epistatic deviations. We analyzed a publicly available maize data set of Dent × Flint hybrids using our new model (called GCA-model) up to additive by additive epistasis. To model higher order interactions within GCAs, we also fitted "residual genetic" line effects. Our new GCA-model was compared with another genomic model which assumes a uniquely defined effect of genes across origins. Most variation in hybrids is accounted by GCA. Variances due to dominance and epistasis have similar magnitudes. Models based on defining effects either differently or identically across heterotic groups resulted in similar predictive abilities for hybrids. The currently used model inflates the estimated additive genetic variance. This is not important for hybrid predictions but has consequences for the breeding scheme-e.g. overestimation of the genetic gain within heterotic group. Therefore, we recommend using GCA-model, which is appropriate for genomic prediction and variance component estimation in hybrid crops using genomic data, and whose results can be practically interpreted and used for breeding purposes.

摘要

我们在基因组背景下重新审视了纯系杂交杂种的混合遗传评估模型理论,因为当前的实践在很大程度上基于无穷小模型假设。我们推导出了由于加性替代效应和显性与上位性偏差引起的杂种间协方差的解析表达式。使用 GBLUP 分析中的密集标记,可以将特殊配合力分为显性和组间上位性偏差,并将一般配合力(GCA)分为在线内加性效应和在线内加性(和高阶)上位性偏差。我们使用新模型(称为 GCA 模型)分析了一个公开的玉米 Dent × Flint 杂种数据集,直到加性到加性上位性。为了在 GCA 中模拟高阶相互作用,我们还拟合了“剩余遗传”线效应。我们的新 GCA 模型与另一个基因组模型进行了比较,该模型假设基因在不同起源之间具有独特的定义效应。杂种的大部分变异由 GCA 解释。显性和上位性的方差大小相似。基于杂种群体不同或相同定义效应的模型在杂种预测能力方面产生了相似的结果。目前使用的模型会夸大估计的加性遗传方差。这对于杂种预测并不重要,但对育种计划有影响,例如在杂种群体内高估遗传增益。因此,我们建议使用 GCA 模型,该模型适用于使用基因组数据进行杂种作物的基因组预测和方差分量估计,并且其结果可以实际解释并用于育种目的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccff/8128411/9b54d8fbceb8/iyab026f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验