National Great Rivers Research and Education Center, East Alton, Illinois, 62024, USA.
Department of Biology, Washington University of St. Louis, St. Louis, Missouri, 63130, USA.
Ecology. 2021 Jul;102(7):e03369. doi: 10.1002/ecy.3369. Epub 2021 May 17.
Organismal locomotion mediates ecological interactions and shapes community dynamics. Locomotion is constrained by intrinsic and environmental factors and integrating these factors should clarify how locomotion affects ecology across scales. We extended general theory based on metabolic scaling and biomechanics to predict the scaling of five locomotor performance traits: routine speed, maximum speed, maximum acceleration, minimum powered turn radius, and angular speed. To test these predictions, we used phylogenetically informed analyses of a new database with 884 species and found support for our quantitative predictions. Larger organisms were faster but less maneuverable than smaller organisms. Routine and maximum speeds scaled with body mass to 0.20 and 0.17 powers, respectively, and plateaued at higher body masses, especially for maximum speed. Acceleration was unaffected by body mass. Minimum turn radius scaled to a 0.19 power, and the 95% CI included our theoretical prediction, as we predicted. Maximum angular speed scaled higher than predicted but in the same direction. We observed universal scaling among locomotor modes for routine and maximum speeds but the intercepts varied; flying organisms were faster than those that swam or ran. Acceleration was independent of size in flying and aquatic taxa but decreased with body mass in land animals, possibly due to the risk of injury large, terrestrial organisms face at high speeds and accelerations. Terrestrial mammals inhabiting structurally simple habitats tended to be faster than those in complex habitats. Despite effects of body size, locomotor mode, and habitat complexity, universal scaling of locomotory performance reveals the general ways organisms move across Earth's complex environments.
生物体的运动介导了生态相互作用并塑造了群落动态。运动受到内在和环境因素的限制,整合这些因素应该可以阐明运动如何在不同尺度上影响生态学。我们扩展了基于代谢和生物力学的一般理论,以预测五种运动表现特征的缩放规律:常规速度、最大速度、最大加速度、最小功率转弯半径和角速度。为了检验这些预测,我们使用了具有 884 个物种的新数据库进行了基于系统发育的分析,发现我们的定量预测得到了支持。较大的生物体比较小的生物体速度更快,但机动性较差。常规速度和最大速度分别以体重的 0.20 和 0.17 次幂缩放,并在更高的体重时达到平台期,尤其是最大速度。加速度不受体重影响。最小转弯半径以 0.19 的幂次缩放,95%置信区间包括我们的理论预测,正如我们所预测的那样。最大角速度的缩放高于预测值,但方向相同。我们观察到常规速度和最大速度在运动模式之间存在普遍的缩放规律,但截距不同;飞行生物比游泳或奔跑的生物更快。在飞行和水生生物中,加速度与体型无关,但在陆地动物中,加速度随体重的增加而减小,这可能是由于体型较大的陆地生物在高速和加速度下受伤的风险较高。栖息在结构简单栖息地的陆地哺乳动物往往比栖息在复杂栖息地的动物更快。尽管受到体型、运动模式和栖息地复杂性的影响,但运动表现的普遍缩放揭示了生物体在地球复杂环境中运动的一般方式。